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Abstract

This paper studies a model of dynamic network formation when individuals are

farsighted : players evaluate the desirability of a “current” move in terms of its

consequences on the entire discounted stream of payoffs. We define a concept

of equilibrium which takes into account far-sighted behavior of agents and allows

for limited cooperation amongst agents. We show that an equilibrium process of

network formation exists. We also show that there are network structures in

which no equilibrium strategy profile can sustain efficient networks. We then

provide sufficient conditions under which the equilibrium process will yield

efficient outcomes.
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1 Introduction

In several social and economic contexts, the structure of interactions be-

tween individuals is best described as a network. The precise structure of

interaction across players may be crucial in determining the outcome. Ex-

amples include channels of information flow (Bala and Goyal (2000), Calvo-

Armengol and Jackson (2001), Bramoullé and Kranton (2002) and Kariv

(2002)), trading networks (Tesfatsion(1997,1998) and Weisbuch, Kirman and

Herreiner(1995)), mutual insurance (Fafchamps and Lund (1997) and Genicot

and Ray (2003)), technology adoption (Conley and Udry (2002), Chatterjee

and Xu (2002) and Bandiera and Rasul (2002)) and buyer-seller networks

(Kranton and Minehart (2000, 2001) and Wang and Watts (2002)).1 Most of

these papers explicitly adopt the network formalism, and describe the space

of interactions as a graph, where the set of nodes coincides with the set of

agents, while an arc between two nodes indicates the existence of bilateral

interaction between the corresponding agents.

The theoretical literature on networks, starting from Aumann and Myer-

son(1988) and Jackson and Wolinsky (1996), emphasizes two related issues.

The first issue is the determination of the structure of networks which will

be formed if links are established voluntarily by agents so as to maximize in-

dividual self-interest, while the second issue is concerned with whether such

1Dutta and Jackson (2003) contains a collection of papers which examine various issues related to network

structures.
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endogenous networks are socially efficient.

Following Aumann and Myerson, the typical approach has been to model

network formation in a static framework, 2 though some degree of farsighted-

ness (for instance via offers and counteroffers) can be accommodated even in

this context.3 A recent departure is Jackson and Watts (2002), which models

network formation as an intertemporal process with individuals breaking and

forming links as the network evolves dynamically. At the same time, individ-

uals are assumed to act myopically : their decisions are guided completely by

current payoffs, although the process of network formation takes place over

real time.

Jackson and Watts argue that this form of myopic behaviour makes sense

in large networks where players’ information may be limited to their imme-

diate “neighborhood”, or if players discount the future heavily. To be sure,

there would be intrinsic interest in the opposite presumption as well: that

agents behave in a farsighted manner and take into account the intertempo-

ral repercussions of their own decisions. A principal aim of this paper is to

formalize this idea in the context of network formation.

Our main methodological tool is a variant of the framework introduced

by Konishi and Ray (2003) to analyze coalition formation when players are

2See, for instance, Dutta and Mutuswami (1997), Dutta, van den Nouweland and Tijs (1998), and Slikker

and van den Nouweland (2000, 2001).
3See, for instance, Currarini and Morelli (2000) and Page, Wooders and Kamat (2001).
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farsighted. At first sight, our modification appears to be simply a special

case: instead of arbitrary coalitions being active at any date, we only permit

a (randomly chosen) pair of agents to be active at the start of a period.

However — and here the structure of a network is used to full effect — each

agent has natural “unilateral” domains of action. These are the network links

that each of the agents has with other agents. An agent can destroy such links

unilaterally, and does not require the consent of her partner to do so. At the

same time, the pair act together on an equally natural “bilateral” domain.

This concerns the formation of a link between the pair. Link formation must

be a joint decision. Therefore, while only special “coalitions” can form, they

are only enjoined to partly cooperate.

This sort of structure raises interesting conceptual issues, and we cannot

pretend to have dealt with them in an entirely satisfactory way. Surely, all

actions pertaining to the bilateral link between a pair are commonly observed

by the two players, and can therefore serve as correlation devices for their

unilateral actions concerning other links. In particular, when a “bilateral

deviation” occurs from some ongoing prescribed strategy, both players will be

aware of this occurrence. In contrast, we assume that a unilateral deviation by

a player that breaks links other than the one with her partner cannot be used

as a conditioning device by the partner. We are aware, of course, that this

restriction is not entirely satisfactory — we rule out bilateral conditioning

on unilateral action — but our own attempts to deal with both types of
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conditioning have led us into difficult terrain (concerning existence, even in

mixed strategies) and we have settled for the more modest advance in this

paper.

We show in Theorem 1 that a Markovian equilibrium process of network

formation exists. An example demonstrates that the equilibrium may neces-

sitate the use of mixed strategies.

We use our solution concept to tackle the question of efficiency in networks.

It is well-known that “stable” networks may not be efficient, and the reason

for this is simple. When a link is formed, or destroyed, the players involved

do so with their own gain in mind. At the same time, these actions also affect

the payoff of other players, and so a wedge is driven between stability and

efficiency. Theorem 2 restates this in an explicitly dynamic context, using

our solution concept: there are network structures where the process will

not converge to any efficient network for any equilibrium strategy profile.

This is the dynamic counterpart of the conflict between individual incentives

and social efficiency demonstrated by Jackson and Wolinsky (1996) for static

networks.

A simple way of seeing this conflict (at least for some equilibria) is to

study network games where link formation is always profitable in the static

sense (to the pair which forms the link). Call this property link monotonicity.

Of course, when players i and j form an additional link, some player k may
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suffer a loss in current value. This implies that the complete network is not

necessarily socially efficient. Nevertheless, Theorem 3 establishes that there

is some equilibrium at which the complete graph is reached in the limit from

all initial networks.

Yet other questions remain. For instance, how good is farsighted network

formation at resolving “weaker” efficiency issues that stem, for instance, from

nonconvexities or increasing returns? In particular, consider situations in

which a “small” number of links are costly (to those who form them), while a

larger number of links is beneficial to all. Jackson and Watts (2002) observe

that myopic agents cannot capture the benefits from such situations: the

process may not get off the ground if initial returns are negative. No pair

of agents may agree to form the first link if the immediate benefit is smaller

than the cost, even if subsequent benefits are exceedingly large.

At first sight, it appears that farsightedness would automatically take care

of this problem. A matched pair of agents would surely realize the future gains

from linking, even if those benefits are not to be had in the short term. Yet

this behavior applied across the board cannot constitute an equilibrium, for

then a matched pair would prefer not to form a link until such time as a large

number of links have already been built up. This would enable then to save

on the transition costs when there are a small number of links. Just because

agents are farsighted does not mean that they are impervious to short-term

costs. Faced with a less costly transition path they would surely prefer such
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an alternative.

Notice that these efficiency issues are not as weak as coordination failures.

There is some element of coordination, in that the efficient outcome is easy

enough to sustain as an equilibrium, provided one starts there. But there is

also a genuine absence of common interest: starting from the null network,

for instance, a player would prefer that other players take the lead in link

formation before plunging in herself. These phenomena have been noted in

other contexts (see Chamley and Gale (1994) and Adserà and Ray (1998)).

Fortunately, we are able to show in Theorem 4 that the complete graph

(which must be socially efficient) will be the unique absorbing limit of the

network formation process for some equilibrium profile.

Of course, “static” coordination failures can arise even in our dynamic

framework. We provide a particularly stark example of this in Example 4,

where we show that all matched pairs may break all links at the complete

graph even when it is the unique socially efficient network. An implica-

tion of such static coordination failures is that typically efficiency cannot be

sustained at all equilibria.
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2 Network Structures

Let I be a finite index set of n players, and g an undirected graph on I. Such

a graph, or network, is formally just a collection of ij pairs, the interpretation

being that i and j are “linked”.4 We use the notation g + ij to denote the

new graph obtained from g by linking i and j.

A component of a network g is a subset c of g such that no i ∈ c is linked

outside c and such that every distinct i and j in c are directly or indirectly

linked.5 Let N(c) denote the set of individuals who are connected in c. Let

C(g) denote all the components of g.

Let G denote the set of all graphs on all nonempty subsets of I. The

complete network, denoted g̃, is the graph where all individuals are linked to

each other.

Given any graph g, and component c in C(g), w(c, g) is the value or total

“worth” of players in c. The total value of g is

w(g) ≡ ∑

c∈C(g)
w(c, g) (1)

We will say that w is an additive function if the value of any component c is

independent of the structure of links of players not in c. In this case, we will

4Because the graph is undirected, these links are reciprocal. For analyses of network structures which are

directed graphs, see Bala and Goyal(2000) and Dutta and Jackson (2000).
5Thus isolated singletons are components by definition.
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simply write w(c). Notice that an additive function w is a generalization of

TU-characteristic functions in cooperative game theory. However, our more

general formulation allows for externalities across components of a graph, and

so represents a generalization of partition functions since the value of a com-

ponent depends not only on the coalition structure as in partition functions,

but also on how the players in c are linked to each other.

Let W be the set of all worth functions defined on all (c, g) pairs, where g

is a network and c a component of g.

2.1 Allocation Rules

An allocation rule is a mapping a : G ×W → Rn such that
∑

i∈I ai(g, w) =

w(g), for all worth functions w and graphs g. The rule specifies the (one-

period) payoffs to each player i for every conceivable network and worth

function. We will refer to the pair (a, w) as a network structure.

An allocation rule satisfies component balance if for all w ∈ W , for all

g ∈ G, and for all c ∈ C(g),
∑

i∈I(c) ai(g, u) = w(c, g), where I(c) is the set

of agents who appear in c. This restriction rules out any cross-subsidization

across links.

An allocation rule is anonymous if it distributes payoffs that depend only

on player position in the network, and the particular worth function, and not
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player labels. Formally, if π is a permutation of I, let gπ be the appropriate

transformation of g, and for any w, define wπ by wπ(gπ) = w(g). Then a is

anonymous relative to (g, w) if for any permutation π, aπ(i)(g
π, wπ) = ai(g, w).

Say that the rule is anonymous (without qualification) if it is anonymous

relative to every (g, w).

Specifically, the anonymity of a requires that the information used to de-

cide on allocations be obtained only from the function w and the particular

network g, and not from the label of a player. In particular, observe that the

anonymity of an allocation rule implies that individuals who are in symmetric

positions in a network are assigned the same allocation, if the underlying w

treats such individuals equally, but not necessarily otherwise.

One rule which is both component balanced and anonymous is the component-

wise egalitarian allocation rule. This rule distributes worth equally within

each component of a graph. That is, letting ae denote the

component-wise egalitarian rule, we have

For all i ∈ I, ae
i (g, w) =

w(c, g)

|c| , where c ∈ C(g), i ∈ I(c).
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2.2 Efficiency

One can attach different notions of (static) efficiency to network structures.6

For instance, efficiency could correspond to maximizing total utility: a graph

g is strongly efficient if w(g) ≥ w(g′) for all g′ ∈ G.

A more conservative definition would allow for limited transferability, so

that the distribution of payoffs is taken into account. A graph g is (weakly)

efficient relative to (a, w) if there is no other g′ ∈ G such that ai(g
′, w) ≥

ai(g, w) for all i ∈ I with strict inequality for some j ∈ I.

2.3 Some Restrictions on Network Structures

Two specific network structures will play a role in what follows. First, a

network structure (a, w) exhibits link monotonicity if for all i, j ∈ I, for all

g, ai(g + ij, w) > ai(g, w) and aj(g + ij, w) > aj(g, w) whenever ij 6∈ g.

Thus, link monotonicity requires that an individual’s payoff is increasing in

the number of her own links.

To be sure, link monotonicity allows for the possibility that an individual’s

payoff may go down if other players set up links (not with that player).

In particular, the complete network g̃ may not be efficient even when the

network structure displays link monotonicity. The example below shows that

6See Jackson (2001).
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when |N | = 3, the complete network may violate strong efficiency. More

complicated examples can be constructed to illustrate the possible violation

of (weak) efficiency when |N | ≥ 4.

Example 1 Let N = {1, 2, 3}. The function w is symmetric with w({ij}) =

2, w({ij, jk}) = 7/4, andw(g̃) = 3/2. Moreover, ai({ij}, w) = aj({ij}, w) =

1, ai({ij, jk}, w) = ak({ij, jk}, w) = 1/4, aj({ij, jk}, w) = 5/4, and al(g̃, w) =

1/2 for all l ∈ N . Obviously, link monotonicity is satisfied, but the complete

network is inefficient.

A network structure (a, w) displays increasing returns to link creation

(IRL) if

(i) w is additive and w(g̃) > 0,

(ii) whenever c is a nonsingleton component of some g with w(c) ≥ 0, then

w(c) < w(c′) for all c′ ⊃ c,

(iii) if i ∈ I(c), but ij /∈ g, then ak(g + ij, w) > ak(g, w) for k = i, j.

The definition is complicated to state but the main idea is very simple. A

network structure satisfies IRL if along every nested chain of “increasingly

connected” networks, there is a threshold (nonempty) network for which the

worth turns nonnegative, and both aggregate payoffs as well as payoffs of

individuals who form extra links increase as the network becomes larger.
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Of course, link monotonicity and IRL are different conditions. The for-

mer applies to all w, not just additive ones, while the latter is restricted to

the additive case. At the same time, the latter condition only imposes link

monotonicity on a subcollection of components, not everywhere, though it

also requires that aggregate worth also increase over this subcollection along

a nested sequence of components. In particular, IRL guarantees that the com-

plete network is the unique strongly efficient network. In contrast, we have

already described an example to show that g̃ may not be strongly efficient

when the network structure satisfies link monotonicity.

3 Some Examples

In this section, we give some examples to illustrate the framework developed

here.

3.1 The Connections Model.

This is due to Jackson and Wolinsky (1996). Links represent social rela-

tionships. Individuals i and j are “friends” if they are linked together, and

friendship is valuable. Individuals also benefit from indirect relationships -

a “friend of a friend” also brings some benefit. The benefit deteriorates in

the ‘distance’ of the relationship. Let π < 1 be the benefit that i gets from
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a direct link with j, and π2 the benefit that i gets from someone who is at a

distance two, and so on. Then,

ai(g, w) =
∑

i 6=j

πt(ij) −#{j : ij ∈ g}d. (2)

where t(ij) is the number of links in the shortest path between i and j, and

c is the cost per link that i has to pay for each direct link. Here, the total

value of a network is simply w(g) =
∑
i∈I

ai(g, w).

The nature of strongly efficient graphs depend upon the relative values of

π and d. If d < π−π2, then the complete graph g̃ is strongly efficient. In this

case, the network structure satisfies both link monotonicity as well as IRL.

A star graph7 encompassing all agents is the unique strongly efficient graph

for intermediate values of d.

If d > π + (N−2
2 )π2, then the empty graph is the unique strongly efficient

graph.

3.2 Group Insurance

Consider a group of n identical rural communities who are isolated in period

zero. In each subsequent period, communities have random endowments.

That is, any community i can have a “high” endowment with probability

7A star graph is one where there is a central node to which every other node is connected, and there are

no other links.
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p, and low endowment with the residual probability. These probabilities

are independent. Normalize the high endowment to equal one unit and low

endowment to equal zero units. Each community is risk-averse, with v being

the common increasing, strictly concave utility function.

Any two communities can be connected at a cost of d. Here, the connection

cost could represent the cost of communication. Any group of connected

communities can mutually insure each other. Suppose the insurance contract

is that each member of the group will get an equal share of the total realized

endowment net of the costs of the links.

Suppose C(g) = {c1, c2, . . . , cK}. With some abuse of notation, let k

denote the cardinality of I(ck). Also, let d(ck) denote the total cost of network

ck. Then

w(ck) = k
k∑

l=0
pl(1− p)k−l


k

l


v


l − d(ck)

k




and

ai(ck, w) =
w(ck)

k
.

Of course, efficiency requires that each component be minimally connected

as long as d > 0. The properties of the network structure depend on the

functional form of the utility function v. It is of some interest to identify con-

ditions under which the graph containing all n rural communities is strongly

efficient.

Assume that the cost of link formation d is negligibly small, and can be
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ignored. Let ai(m) denote the payoff to i if i is in a component containing m

communities. Then

ai(m) =
m∑

k=0
pk(1− p)m−k


m

k


v(

k

m
).

We want to identify conditions under which ai(m) is increasing in m. Taking

a McLaurin series expansion of v(x) around 0 and substituting, we obtain

the expression

ai(m) =
v′(0)

m

m∑

k=0
pk(1− p)m−k


m

k


k +

v′′(0)

2m2

m∑

k=0
pk(1− p)m−k


m

k


k2

+
v′′′

(
θ k

m

)

6m3

m∑

k=0
pk(1− p)k


m

k


k3

If v′′′ (x), 0 < x < 1 is small, we can ignore the remainder term to obtain

ai(m) = v′(0)p +
v′′(0)

2


p2 +

p(1− p)

m




By assumption, v′′(0) < 0. It follows that ai(m) is increasing in m. It is

easily checked that there are strictly increasing, concave utility functions for

which v′′′ (x) is small for 0 < x < 1. An example is the utility function

v(x) = Kx− x2

2 , K > 1. Outside [0, 1], v(x) can always be extended so that

it continues to be strictly increasing and concave. However, in general, ai(m)

is not necessarily increasing in m.
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3.3 Networks of Collaboration in Oligopoly.

This is due to Goyal and Joshi (2003).8 Consider an oligopoly setting where

firms form pairwise collaborative links with other firms. The collaboration

could involve joint research activities, sharing knowledge about markets, shar-

ing facilities such as distribution channels. A collaboration link between firms

i and j yields lower costs of production for the two firms. Any collaboration

network thus induces a distribution of costs across firms. Given these costs,

firms subsequently compete on the product market as Cournot oligopilists.

Assume that initially all firms have zero fixed costs, and constant returns-

to-scale cost functions. The initial marginal cost of firm i is ci0. Given a

graph g, let µi(g) denote the number of firms with which i has collaboration

links in g. Then, the resulting marginal cost of firm i is:

ci(g) = ci0 − γµi(g).

where γ > 0 is the cost reduction induced by each link formed by a firm.9

Suppose the inverse market demand curve is linear :

p = a− q

The output produced by firm i in the Cournot game will be:

qi(g) =
(a− nci0 +

∑
j 6=i cj0) + nγµi(g)− γ

∑
j 6=i µj(g)

n + 1

8See also Goyal and Moraga(2001).
9Assume that γ is small, so that net marginal cost is always positive for each firm.
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The profit will be (qi(g))2. Notice that the profit of firm i increases if i

sets up an additional link with say firm j. While this additional link also

reduces firm j’s cost, the overall effect on firm i’s profit is positive. Hence,

the network structure satisfies link monotonicity. On the other hand, an

additional link by two rival firms k and l reduces firm i’s profit. So, the

network structure does not satisfy IRL.

4 Process of Network Formation

Suppose that at any date, a pair of players i and j is randomly chosen (with

uniform probability) and endowed with the capacity to take actions at that

date. Each of these players can unilaterally sever any existing link with any

other player, and they can bilaterally form a link between the two of them if

one doesn’t exist to begin with. These actions create a (possibly) new graph,

and then one-period payoffs are received according to the given allocation

rule. The current period then ends, and the whole process begins again ad

infinitum.

Thus there are two components of a strategy in force: unilateral, which

involves link severance, and bilateral, which involves link creation (and will

generally be correlated across the relevant actors). Throughout, we will as-

sume that players follow Markov strategies; i.e., their actions will be presumed

to depend only on the existing payoff-relevant state.
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Because strategies involve some elements of correlation and independence,

we will need to be more specific and careful in describing them. Suppose that

two individuals “partially cooperate”, as they do here in setting up a bilateral

link, but also take independent actions, as they do here with link destruction.

Then all matters related to the bilateral link between i and j are commonly

observed by the two players, and can therefore serve as correlation devices:

either player can condition his other unilateral actions on the fate of this

link. For instance, when a “bilateral deviation” occurs from some ongoing

prescribed strategy, both players will be aware of this and can condition their

independent actions on such deviation. In contrast, a unilateral deviation by

i that breaks links other than the one with j cannot be used as a conditioning

device by j. This suggests that the situation is formally equivalent to one in

which (at any date) actions pertaining to the ij link are taken “first” and

these are “followed” by the unilateral actions pertaining to all other existing

links.10 Let us make this approach more formal.

It will be useful to define a principal state as a collection s = (g, ij), where

g is the historically given graph and ij is the chosen active pair. Define an

intermediate state as a collection s = (g, ij, ζ), where g and ij are as before,

and ζ is a variable which takes the value 0 if the pair ij is not linked, and

the value 1 if ij is linked. An intermediate state doesn’t physically exist; it

is a conceptual halfway point for defining unilateral actions; hence the choice

10The phrases that suggest chronology are deliberately in quotes because no real chronology is implied.
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of terminology. In contrast, a principal state physically exists at the start

of a period. When there is no need for a distinction, we shall simply use

“state” to denote either of the two varieties. Notice, too, that we use the

same notation s which will also ease the writing.

For any intermediate state s = (g, ij, ζ), define Di(s) ≡ {k 6= j|ik ∈ g},
and likewise define Dj(s). These are the sets of existing linkages to i, but

never counting j. As already discussed, a bilateral action to create (or main-

tain) the link between an active pair is not undone at the intermediate state.

This does not mean that unilateral breaking of an ij-link is not permitted;

it certainly is but only at the principal state. Put another way, such actions

are commonly experienced and can serve as correlating devices for actions on

the “unilateral domains” Di(s) and Dj(s).

Moreover, note that by assumption, i and j can break links on their uni-

lateral domains; no links other than those pertaining to the active pair can

be created during the period.

Formally, then, (mixed) actions may be described as follows. At any prin-

cipal state s with active pair ij it is simply a probability µ(s) = q of bilateral

linkage between i and j. At any intermediate stage s with active pair ij it is a

collection µ(s) ≡ {νi, νj}, where for each k = i, j, νk is a probability measure

defined over all subsets (including the empty subsets) of Dk(s).
11 We will let

11As a matter of notation, we should also index the individual ν-components by s, but this is notationally

cumbersome and hopefully the context will prevent any confusion.
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µ stand for the entire profile of µ(s)’s over all states (notice that µ(s) has a

different interpretation depending on what sort of state we are looking at),

and refer to µ as a strategy profile.

A strategy profile precipitates — for each state s, principal or intermediate

— some probability measure λs over the feasible set F (s) of future networks

starting from s. In particular, a Markov process is induced on the set S of

principal states: at any principal state s, λs describes the movement to a new

network, and the given random choice of active players moves the system to

a new active pair.

The process creates values for each player. Assuming that the ak’s are

vN-M payoffs, we can write — for every state s with active pair ij — the

overall payoff to any person k (under the strategy profile µ) as the unique

solution to the functional equation

Vk(s, µ) =
∑

g′∈F (s)
λs(g

′)[ai(g
′) + δi

∑

i′j′
π(i′j′)Vk(s

′, µ)]

where δi ∈ (0, 1) is the discount factor of agent i, λs is the probability over

F (s) associated with µ, π(i′j′) is the probability that a pair i′j′ will be active

“tomorrow”, and s′ stands for the principal state (g′, k′`′). [Note that Vk is

well-defined on both principal and intermediate states.]

We will also find it convenient to denote Vk(g, µ) as the (expected) payoff
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to k at a given network g. This is given by

Vk(g, µ) =
2

n(n− 1)

∑

ij∈I×I

Vk((g, ij), µ)

4.1 Equilibrium

Loosely speaking, an equilibrium process of network formation is a strategy

profile µ with the property that there is no active pair at any state s which

can benefit –either unilaterally or bilaterally — by departing from µ(s). The

benefit is evaluated according to the value function introduced above. The

remainder of this section contains a precise formulation of this idea. Before

the formalities are introduced, however, note the following points:

[1] Profitable deviations are not necessarily myopic: individuals take the on-

going process as given and evaluate the entire stream of consequences arising

from a single action. One can imitate perfectly myopic behavior by taking

the discount factor to zero, and perfect farsightedness by taking the opposite

limit.

[2] Network formation and payoffs occur together. There is no “waiting” in

the model until some “stable” network is formed, following which payoffs

are assigned. Indeed, our definition permits cycles and continued flux in the

network, and there is no difficulty at all in evaluating overall payoffs.

cde cde
21



Now for a precise account. Fix some ongoing strategy profile µ and an

intermediate state s with active pair ij. A unilateral move for i at s (to be

sometimes referred to as an i-unilateral move at s when it’s necessary to keep

track of the relevant agent) is simply a collection µ′(s) = {ν ′i, νj}, where the

jth component cannot be altered from that of µ(s). (Likewise for j.) Given

a principal state s, a bilateral move for the active pair ij is a new probability

µ′(s) of ij-linkage. A unilateral move for i at the principal state s is also a

new probability µ′(s) of ij-linkage, but it “takes effect” only if the ij-linkage

is present in the historically given graph. That is, i can unilaterally decide

to alter the probability of the ij-linkage provided i and j are already linked

together.

In words, unilateral moves for an agent can either destroy ij-linkage and/or

other existing linkages on that agent’s unilateral domain. Of course, an i-

unilateral move cannot prescribe changes on j’s unilateral domain. A bilateral

move can only create ij-linkage (everything else belongs to the unilateral

domains). Now, in part this compartmentalization is a matter of semantics.

For instance, suppose that at some principal state s = (g, ij), ij is unlinked

for sure; that is, q(s) = 0. So the intermediate state s′ = (g, ij, 1) will never

happen. Nevertheless, the actions µ(s′) = (νi, νj) are still specified, even

though they don’t kick in under µ. Now if a bilateral move or “deviation”

links ij, the play will generally change on other fronts as well, as the unilateral

action pairs “switch” from µ(g, ij, 0) to µ(g, ij, 1). More on these matters
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below.

Now, fix some profile µ and a state s (principal or intermediate). For any

µ′(s) and for each player k, define

Vk(s, µ, µ′(s)) ≡ ∑

g′∈F (s)
λ′s(g

′)[ak(g
′) + δi

∑

i′j′
π(i′j′)Vk(s

′, µ, µ′(s))] (3)

where s′ is the principal state (g′, i′j′). For an intermediate state s with active

pair ij, and for some k = i, j, say that a k-unilateral move µ′(s) is profitable

if

Vk(s,µ, µ′(s)) > Vk(s,µ, µ(s)), (4)

Likewise, for a principal state s with active pair ij, say that a bilateral move

µ′(s) is profitable if

Vi(s, µ, µ′(s)) > Vi(s, µ) and Vj(s, µ, µ′(s)) > Vj(s, µ). (5)

A strategy profile µ is an equilibrium if at no s is a unilateral or bilateral

move profitable.

Notice how our description of equilibrium subsumes a rationality require-

ment akin to perfection.12 An equilibrium must be immune to all profitable

moves, including those starting from intermediate states that may never be

reached.
12It is not the same as perfection because — properly speaking — an intermediate stage may not be

viewable as a subgame. It is a device designed to capture partial cooperation.
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4.2 Existence

One can establish the following

Theorem 1 An equilibrium in mixed bilateral and unilateral strategies al-

ways exists.

Proof. For every state s look at the space U(s) of all possible µ(s). Let

U ≡ ∏
s∈S U(s). [Note: with the obvious product topology, U is viewable as

a compact, convex subset of some finite-dimensional Euclidean space.] For

each s, we construct a nonempty-valued, convex-valued uhc correspondence

Ψs from U to U(s) in the following way.

Fix some µ ∈ U, and consider any state s. If s is an intermediate

state with active pair ij, maximize — for each k ∈ {ij} — the value of

Vk(s,µ, µ′(s)) over all k-unilateral deviations from s. Gather all the mixed ac-

tions ν ′k that achieve this maximum. Because Vk is linear in ν ′k, this collection

is nonempty and convex: call it Ak(s, µ). Define Ψs(µ) ≡ Ai(s, µ)×Aj(s, µ).

We’ve already seen that Ψs is a nonempty- and convex-valued correspon-

dence. The fact that it is uhc follows from the continuity of Vk(s,µ, µ′(s)) in

µ and the maximum theorem.
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If s is a principal state with active pair ij, then denote by s0 and s1 the

two intermediate states that emerge from it. If the expression

min{Vi(s
1, µ)− Vi(s

0, µ), Vj(s
1, µ)− Vj(s

0, µ)}

is strictly positive, define Ψs(µ) = {1}. If the expression is strictly negative,

set Ψs(µ) = {0}. If it is zero, let Ψs(µ) = [0, 1].

It is obvious that for each µ, Ψs(µ) is nonempty and convex. Using the

continuity of Vk(s
′, µ) in µ, it is straightforward to check that Ψs(µ) is uhc.

It follows from the two previous paragraphs and Kakutani’s theorem that

the product Ψ ≡ ∏
s∈S Ψs (which is a correspondence from U to U) must have

a fixed point µ∗ in U. By construction, no profitable deviation — unilateral

or bilateral — is possible from µ∗, and therefore it is an equilibrium.

Of course, the theorem establishes the existence of equilibrium in mixed

strategies. This qualification is important because the next example shows

that an equilibrium in pure strategies may not always exist.

Example 2 : Let I = {1, 2, 3}. Consider the allocation rule defined below.

(i) a1(g
1) = a, a2(g

1) = b, where g1 = {12}, and a = b + ε.

(ii) a2(g
2) = a, a3(g

2) = b where g2 = {23}.

(iii) a3(g
3) = a, a1(g

3) = b where g3 = {13}.
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(iv) On all other graphs g with at least one arc, w(g) is a large negative

number, and a distributes the (negative) value equally.

Suppose µ is a pure strategy equilibrium. We first show that there cannot

be any absorbing graph.13 Wlog, suppose g1 is an absorbing graph. Consider

the principal state s = (g3, 12). Then, since a > b, we must have λs(g
1) = 1.

To check this assertion, note that if the assertion is not true, then either

V1(g
3, µ) ≥ a

1−δ or V2(g
3, µ) ≥ b

1−δ . Since V1(g
3, µ) must be strictly less than

a
1−δ if λs(g

1) = 0, the only possibility is that V2(g
3, µ) ≥ b

1−δ . This possibility

too can be ruled out.

This in turn implies that g2 is also an absorbing graph since neither 2 nor

3 want to move from g2. But, if g2 is an absorbing graph, then we must

have λs(g
2) = 1 where s = (g1, 23) since a > b. This contradicts the initial

supposition that g1 is an absorbing graph.

The only other possibility is that {g1, g2, g3} form a closed set. In this

case, we have λs(g
2) = 1 where s = (g1, 23), λs′(g

3) = 1 where s′ = (g2, 13),

and λs̄(g
1) = 1 where s̄ = (g3, 12). Then, the following are true:

V2(s,µ) = a + δV2(g
2, µ)

V2(g
2, µ) =

1

3

[
V2((g

2, 12), µ) + V2((g
2, 13), µ) + V2((g

2, 23), µ)
]

=
2a

3− 2δ
+

δV2(g
3, µ)

3− 2δ

13A graph g is absorbing if λs(g) = 1 for all states s = (g, ij).
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V2(g
3, µ) =

1

3

[
V2((g

3, 12), µ) + V2((g
3, 13), µ) + V2((g

3, 23), µ)
]

=
b

3− 2δ
+

δV2(g
1, µ)

3− 2δ

V2(g
1, µ) =

1

3

[
V2((g

1, 12), µ) + V2((g
1, 13), µ) + V2(s,µ)

]

=
2b

3− 2δ
+

V2(s,µ)

3− 2δ

Making appropriate substitutions and simplifying,

V2(s,µ) =
3a

(3− 2δ)(1− δ3

(3−2δ)3 )
+

δ2b

(1− δ)((3− 2δ)2 + δ2 + (3− 2δ)δ)

On the other hand, if 2 deviates at the principal state s and refuses to form the

link with 3, then g1 would be an absorbing graph, and then V2(s, (µ2, µ
′
2)) =

b
1−δ . We show that for δ large enough, b

1−δ > V2(s, µ), thereby contradicting

the supposition that µ is an equilibrium. To this end, note that

V2(s, µ)
b

1−δ

=
3a(1− δ)

b(3− 2δ)(1− ( δ
3−2δ)

3)
+

δ2

(3− 2δ)2 + δ2 + (3− 2δ)δ)

Using L’Hospital’s rule, lim
δ→1

1−δ
(1− 2

3δ)(1−( δ
3−2δ )3) = 1

3 . Also, lim
δ→1

δ2

(3−2δ)2+δ2+(3−2δ)δ) =

1
3 . Hence,

lim
δ→1

V2(s, µ)
b

1−δ

< 1 when
b

a
< 2. (6)

This establishes that µ is not an equilibrium since ε can be chosen smaller

than b.
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5 Sustaining Efficiency

An issue in this general setting that merits special attention is the question of

network efficiency. It hardly needs mentioning that the efficiency question is

fundamental: the “Coase theorem” tells us that under free and unrestrained

negotiation, with the ability to write unlimited binding agreements, the equi-

librium outcome must be efficient. Whether or not the “Coase Theorem” is

true is a complex question: it depends on how one models “free and unre-

strained negotiation”: there are conceptual difficulties in a precise description

of what exactly this phrase means. A more modest goal is to describe small

departures from the unrestrained ideal, and see how much of an efficiency

failure (if at all) takes place.

The great merit of the current setup is that it captures one central aspect

of free negotiation, which has to do with continued renegotiation. In this

framework, links can be altered continually, and if there is little discounting

of the future, this means that there is essentially vast scope for continued

movement with very little cost. Does this give rise to efficient outcomes?

Our results suggest that the answer to this question is far from easy.

We have already provided alternative definitions of efficient networks.

There is then the question of what it means for network formation processes

to yield these efficient outcomes. These have to do with concepts of absorp-

tion: an efficient state (however defined) may be strongly absorbing (in the
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sense that it attracts the process from all initial conditions), or it may be

just a stationary state (other weak definitions, such as recurrence, are also

possible).

The most satisfactory situation is one in which all equilibrium strategy

profiles result in transition probability matrices which have the property that

all closed sets are contained in the set of efficient graph(s). This would ensure

that even if mistakes are made along the way14 the process of network for-

mation converges to some efficient graph(s) with probability one. Of course,

this is an extremely strong requirement, and one that we should not normally

expect to be satisfied. For instance, even if players are farsighted, there is no

reason why they should be able to ensure that “static” coordination failures

are avoided.

In order to demonstrate that the issue of sustaining efficiency in this frame-

work is not a trivial proposition, we also show that there are network struc-

tures in which no equilibrium strategy profile can sustain any efficient network

as a strongly absorbing state. This can be viewed as the dynamic counterpart

of the conflict between (static) stability and efficiency demonstrated by Jack-

son and Wolinsky (1996). To show this, say that an allocation rule allows

limited transfers if ai(g, w) ≤ w(g) for all i whenever w(g) ≥ 0.

An allocation rule which allows limited transfers does not permit other

14By “mistakes” we mean non-equilibrium behavior. If mistakes are not made, then it is sufficient to

consider whether all paths starting from the empty graph converge to some efficient graph.
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individuals to “overcompensate” any individual.

Theorem 2 Let the allocation rule a be anonymous and allow limited trans-

fers. Then there is w and δ̄ < 1 such that for all δ ∈ (δ̄, 1) no efficient graph

(relative to (a, w)) is strongly absorbing at any pure strategy equilibrium pro-

file.

Proof. Let I = {1, 2, 3}. Choose w such that w{ij} = 2α, w{ij, ik, jk} =

3α, w{ij, jk} = 0, where α > 0. Since a is anonymous, ak({ij}) = α for

k = i, j. Similarly, each agent gets α at the complete graph. Finally, the

limited transfers property ensures that each agent gets 0 at {ij, jk}.

The unique efficient graph here is the complete graph. We want to show

that there is no pure strategy equilibrium at which g̃ is strongly absorbing.15

Suppose instead that µ∗ is a pure strategy equilibrium for which g̃ is

strongly absorbing. Since all subsequent statements are with reference to

this strategy profile, we will simply write Vi(g), etc., instead of Vi(g, µ∗).

We also use the notation {ij} →ik g to denote that the network {ij} is

changed to g at the principal state ({ij}, ik) according to µ∗.

Then, the following are true:

15However, there are pure strategy equilibria in which g̃ and each of the one-link graphs are absorbing.
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(F1) {ij} →ij {ij}.

(F2) {ij} →ik g 6= {ij} and {ij} →jk g′ 6= {ij} for k /∈ {i, j}.

Note that if (F2) does not hold at some {ij}, then {ij} must be an absorbing

graph at any equilibrium, which contradicts the supposition that g̃ is strongly

absorbing.

If g̃ is to be strongly absorbing, then there must exist some principal state

s = ({ij}, ik) such that {ij} →ik {ij, ik}. Wlog, let s = ({12}, 13), and

denote g = {12, 13}. Then,

V1(s) = δV1(g) =
δα

(3− 2δ)(1− δ)
(7)

Case 1: Suppose {12} →23 {12, 23} = g′.

Suppose 1 deviates from µ∗ at s by refusing the link with 3, but retains

the link with 2. Denoting the resulting discounted payoffs by V ′
1 ,

V ′
1(s) = α + δV ′

1({12})
= α +

δ

3
[2α + 2δV ′

1({12}) + δV ′
1(g

′)]

=
3α + δ2V ′

1(g
′)

3− 2δ

Using V1(g
′) = V1(g),

V ′
1(s)− V1(s) =

3α

3− 2δ
+

δα

(3− 2δ)(1− δ)

(
δ

3− 2δ
− 1

)
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=
3α

3− 2δ
− 3αδ

(3− 2δ)2

> 0.

But, then µ∗ cannot be an equilibrium.

Case 2: Suppose {12} →23 {23}.16

We let the reader check that if {23} →13 {13}, then 2 is better off by re-

taining the link with 1 and refusing to form the link with 3 at s′ = ({12}, 23).

So, we only need to check for the case {23} →13 {13, 23} = g′′ and

{23} →12 {12}.17

In this case, we have to consider specifications of µ∗ at principal states

involving the network {13}.

Case 2(a): Suppose {13} →12 {12} and {13} →23 {13, 23}.

Then,

V1({13}, 12) = α + δV1({12}).

where

V1({12}) =
α

3− 2δ
+

δV1(g)

3− 2δ

16In view of (F2), this is the only remaining possibility.
17If {23} →13 {13, 23}, then it cannot be the case that {23} →12 {12, 23}. Simply apply the proof of Case

1 to establish that 2 will then have a profitable deviation at the principal state ({23}, 12).
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Suppose 1 deviates from µ∗ at the principal state ({13}, 12), by retaining

the link with 3 and refusing to form the link with 2. Denoting the resulting

discounted payoffs by V ′,

V ′
1(({13}, 12) = α + δV ′

1({13}).

But

V ′
1({13}) =

2α

3− 2δ
+

δ

3− 2δ
V1({13, 23}) =

2α

3− 2δ
+

δα

(3− 2δ)2(1− δ)
> V1({12}).

Hence, µ∗ cannot be an equilibrium in this case.

Case 2(b): Suppose {13} →12 {12, 13} and {13} →23 {23}

In this case, 3 has a profitable unilateral deviation at ({13}, 23) - 3 can

retain link with 1 and refuse to form link with 2.

Case 2(c): Suppose {13} →12 {12} and {13} →23 {23}.

Then,

V3({13}, 23) = α + δV3({23}).

Also,

V3({23}) =
α

3− δ
+

δ

3− δ
V3({13, 23}) +

δ

3− δ
V3({12}).

V3({12}) =
α

3− δ
+

δ

3− δ
V3({23}) +

δ

3− δ
V3({12, 13}).

cde cde
33



Using the fact that V3({12, 13}) = V3({13, 23}) = δα
(3−2δ)(1−δ) , and simplifying,

V3({23}) =
α

3− 2δ
+

δ

3− 2δ
V3({13, 23})

Hence,

V3({13}, 23) =
3α− αδ

3− 2δ
+

δ2

3− 2δ
V3({13, 23}).

Now, suppose 3 deviates at the intermediate state so that after forming a link

with 2, 3 retains the link with 1. Then,

V ′
3({13}, 23) = δV3({13, 23}).

Hence,

V ′
3({13}, 23)− V3({13}, 23) =

3αδ

(3− 2δ)2 −
3α− αδ

3− 2δ
.

This is positive for δ large enough.

Also, note that 2 is better off forming the link with 3 rather than remaining

at {13}, even if 3 refuses to cut the link with 1. Hence, µ∗ cannot be an

equilibrium in this case either.

Using (F2), this exhausts all possible cases, and so establishes the theorem.

Notice that the complete graph may be absorbing at some equilibrium.

However, if the process of network formation “starts” at the empty network,

then the complete graph will never be reached at any equilibrium — only one-

link graphs will form. So, this example illustrates the importance of efficient

graphs being sustained as strongly absorbing graphs.
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In what follows, we both simplify and extend the logic of inefficient out-

comes. The simplification is that we select the equilibrium in question (The-

orem 2 applied to all equilibria). But we extend the argument in the sense

that we provide a set of conditions (not just an example) under which the

complete network is strongly absorbing (for some equilibrium). At the same

time, the complete network may be inefficient.

Specifically, we now show that if the network structure satisfies link mono-

tonicity, then the complete graph g̃ can be supported as a strongly absorbing

graph at some equilibrium strategy profile. [However, we also give an exam-

ple to show that the complete graph is not necessarily strongly absorbing at

all equilibria.]

Theorem 3 Suppose (a, w) satisfies link monotonicity. Then, for all δ ∈
(0, 1), there is some equilibrium µ∗ such that g̃ is strongly absorbing.

Proof. Consider the strategy profile µ∗ where at any principal state (g, ij),

i and j form the link ij (if unlinked), and do not sever any existing link in

g. We show that such µ∗ is an equilibrium strategy profile.

It will be sufficient to show that

For all g, for all ij /∈ g, Vi(g + ij, µ∗) > V (g, µ∗). (8)

We prove that (8) is true by induction on the number of links (“distance”)

that separates g from g̃.
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If g and g̃ are separated by a single link, then g = g̃ − ij. In this case,

given the strategies of all players, i and j obtain (in each period) precisely

ai(g, w) and aj(g, w) as long as they do not form a link, and ai(g̃, w) and

aj(g̃, w) if they do. So given link monotonicity, (8) is trivially true in this

case.

Next, define M ≡ (
n
2

)
. This is the number of all possible pairs, and there-

fore also the maximal distance between g̃ and any g. Suppose, inductively,

that for 2 ≤ K ≤ M , (8) holds for all g which are at a distance of K − 1 or

less from g̃. Pick any g (with ij /∈ g) at distance K from g̃. Define g′ ≡ g+ij.

Then

Vi(g, µ∗) =
M −K

M
(ai(g, w) + δVi(g, µ∗)) +

1

M


∑

kl/∈g

(ai(g + kl, w) + δVi(g + kl, µ∗))




=

(M −K)ai(g, w) + ai(g
′, w) + δVi(g

′, µ∗) +
∑

kl/∈g′
(ai(g + kl, w) + δVi(g + kl, µ∗))

M − δ(M −K)
(9)

Similarly,

Vi(g
′, µ∗) =

(M −K + 1)ai(g
′, w) +

∑
kl/∈g′

(ai(g
′ + kl, w) + δVi(g

′ + kl, µ∗))

M − δ(M −K + 1)

>

(M −K + 1)ai(g
′, w) +

∑
kl/∈g′

(ai(g + kl, w) + δVi(g + kl, µ∗))

M − δ(M −K + 1)
(10)

where the inequality invokes both link monotonicity and the induction hypothesis (noting

that for all kl /∈ g′, g′ + kl = {g + kl}+ ij, and that g + kl is at a distance of K − 1 from g̃).

Combining (9) and (10), we may conclude that

[M−δ(M−K+1)]Vi(g
′, µ∗)−[M−δ(M−K)]Vi(g, µ∗) > (M−k)[ai(g

′, w)−ai(g, w)]−δVi(g
′, µ∗),
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so that

Vi(g
′, µ∗)− Vi(g, µ∗) >

M −K

M − δ(M −K)
[ai(g

′, w)− ai(g, w)] > 0,

the last inequality following from link monotonicity once again. This completes the

inductive step.

Link Monotonicity does not imply that the complete graph is strongly

absorbing at all equilibria. In Example 1, it is easy to check that there can

be an equilibrium in which the one-link graph is an absorbing graph.

Finally, we turn to a positive result regarding efficiency. In the next theo-

rem, we show that if the network structure satisfies IRL, and if the allocation

rule is the component-wise egalitarian rule, then the complete graph will be

strongly absorbing at some pure strategy equilibrium profile. A first reaction

may be that this is an obvious result. After all, if g̃ is the unique strongly

efficient graph, then surely everyone has a common interest in reaching g̃ and

then staying there? However, suppose that aggregate payoffs are negative for

“small” graphs. Then, all individuals prefer to join the network after it has

reached the critical threshold beyond which payoffs are nonnegative. So, it

is a non-trivial issue to show that free-riding behaviour does not become so

pervasive so as to prevent the network formation process from converging to

the complete network.

The following example illustrates the nature of the free-riding behavior

when the network structure satisfies IRL.

cde cde
37



Example 3 Let N = {1, 2, 3}, w(g) = −4 if #g = 1, w({ij, jk}) = −3, w(g̃) =

3. Suppose the allocation rule is the component-wise egalitarian rule.

Then, it cannot be an equilibrium for all pairs to form a link at all net-

works. For suppose, both 1 and 2 want to form additional links at each

opportunity. This then allows 3 to free ride. To check this, let V3 denote dis-

counted payoffs if 3 also agrees to form a link at each opportunity. Routine

calculations yield (for i = 1, 2)

V3(∅, 3i) = − −6

3− δ
− 6δ

(3− δ)(3− 2δ)
+

2δ2

(3− δ)(3− 2δ)(1− δ)

On the other hand, if 3 refuses to form the first link, but is willing to form

subsequent links, then the discounted payoff at a principal state (∅, 3i) is

V ′
3(∅, 3i) =

δ2

(3− 2δ)2(3− δ)

[
−6 +

2δ

1− δ

]
> V3(∅, 3i)

Of course, whether free-riding will take place or not depends on the specific

parameter values. For instance, if δ is “close” to 1, and if w(g̃) is sufficiently

large relative to the absolute values of other graphs, then all agents will want

to form additional links at each opportunity.

Theorem 4 Suppose the network structure satisfies IRL. Then, for all δ

sufficiently large, there is an equilibrium strategy profile such that g̃ is strongly

absorbing.
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Proof: If a component c is nonsingleton and w(c) ≥ 0, call it nonnegative.

Define a strategy profile µ∗ as follows. Consider any state s = (g, ij).

(I) If either i or j (or both) are members of some nonnegative component

of g (perhaps different ones), then i and j retain all existing links and

form the link ij if it did not exist before (and if s is a principal state).

(II) Otherwise, i and j follow any equilibrium strategy profile in the “re-

stricted” game where strategies follow (I) whenever (I) applies.18

Notice that in Case I, the immediate payoffs of both i and j must go

up (this is easy to verify using the definition of IRL). This means that link

monotonicity is satisfied on the subdomain in which (I) applies. Because w

is additive, the behavior specified by (I) is an equilibrium, by Theorem 3. So

µ∗ is an equilibrium in the overall game.

We will now show that the equilibrium entails convergence to g̃. To this

end, we first claim

Fact 1. If Vi(s, µ
∗) > 0 for any state s and any i, the process must converge

to g̃ from that state.

To prove this, let H be the set of all graphs that contain at least one non-

negative component. By (I), if the process enters H, then it must converge
18The strategy profile µ∗ is well defined because our existence proof implies that an equilibrium will exist

in the restricted game.
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to g̃ a.s. But if the process does not ever enter H, then no player can ever

earn a strictly positive payoff, by the definition of IRL. This proves Fact 1.

Fact 2. There exists a δ̄ ∈ (0, 1) such that for all δ ≥ δ̄ and for any graph

g, there is some stage of the form s = (g, ij) where the active players i and

j earn a positive payoff.

To show this, first note that once the process enters H, there is a stochastic,

bounded time (independent of δ) within which the complete graph g̃ will be

reached. Notice that ai(g̃, w) > 0 for all i, so for any i,

Vi(s, µ
∗) ≥ Vi(δ),

for some function Vi(δ) which goes to +∞ as δ → 1.

Now, take any connected ḡ /∈ H such that ḡ + ij ∈ H for some ij, and

let s = (ḡ, ij). Both i and j can get at least δVk(δ) (for k = i, j) by forming

the link ij. This means that their equilibrium payoff is strictly positive. It

follows from Fact 1 that from s the process must converge to g̃ almost surely.

Let q ≡ |{kl|(ḡ + kl) ∈ H}|. Then the following is immediate: The

probability that the network process converges to g̃ from ḡ is at least q
M .

Next, observe that the (stochastic) time to any pair being active is a

bounded random variable, independent of the discount factor. Moreover, any

active pair can always break all links. Therefore, there is finite L, independent
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of the discount factor, such that for all states s and for all individuals i,

Vk(s, µ
∗) ≥ −L no matter what the discount factor is.

Now, take any g′ and kl such that g + kl = ḡ, and consider s′ = (g, kl).

Since kl can form the link kl, for each i ∈ {k, l}

Vi(s
′, µ) ≥ ai(ḡ, w) +

q

M
δ2Vi(δ)−

M − q

M
L

Notice that for sufficiently large values of δ, Vi(s
′, µ∗) →∞ as δ → 1. There-

fore the active pair (k, l) enjoys a strictly positive payoff at this stage.

Continuing these arguments inductively, it is possible to establish Fact 2

for all initial networks g.

Combining Facts 1 and 2, the proof of the proposition is complete.

The next example shows that “static” coordination failures can occur even

when the network structure satisfies IRL - the example shows that g̃ is not

strongly absorbing at some equilibrium profiles even though IRL is satisfied.

Example 4 Suppose N = {1, 2, 3, 4}, the network structure satisfies IRL,

with w(g̃) = 4, w({ij}) = −100, w(g) < 0 for all other nonempty g ⊂ g̃. Let

the allocation rule be ae, and δ > 6
151.

Let µ be such that each pair i, j breaks all links at each (g, ij) and also

refuses to form the link ij if ij /∈ g. This makes the empty graph the strongly

cde cde
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absorbing graph. To check that this is an equilibrium, we simply check in-

centives to follow this strategy profile at g̃. First, note that for all g and

i, j,

Vi(g, ij, µ) = 0

Suppose i, j deviate at (g̃, ij) and dont break any links. Denoting this strategy

profile by µ′, routine calculation yields

Vi(g̃, ij, µ′) =
6(6− 151δ)

(6− δ)2 < 0

This shows that µ is an equilibrium.
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