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1. Introduction

1.1 The problem

Consider n nations whose firms emit some pollutant into a shared medium. The ag-

gregate emission damages the interests of consumers in all these nations. The status quo

situation is that each emitting firm chooses its production plan, and therefore emission, to

maximize its own profit, subject to domestic regulatory constraints, without taking into

account the externality suffered by the consumers. For standard specifications of national

welfare that take consumer welfare into account, the resulting outcome is inefficient. Sup-

pose these nations attempt to improve upon this situation by means of a protocol that

caps each nation’s emission to some country-specific level.1

Each nation consists of two classes of entities: firms that emit pollution and consumers

who suffer the damage from the aggregate international emission. While the production

and emission decisions are made by the firms, the emission caps under the protocol are

negotiated by the national governments without the firms being at the table. As seems rea-

sonable, we model the negotiating national governments as being concerned not only about

the profits of domestic firms but also about the damage suffered by domestic consumers.

We assume that every nation has the sovereign right to choose the mechanism for

allocating among the domestic firms the emission rights received by it in the form of the

national emission cap. We do not model this choice and take it as exogenously given. In

effect, domestic regulation is black-boxed and assumed to be effective, which allows us

to focus on the issue of incentive compatibility in the emission capping process without

worrying about subsequent domestic implementation issues. It also allows us to aggregate

each nation’s firms into a single national firm.2 For the sake of convenience, we shall also

aggregate each nation’s consumers into a single national consumer.

Our model has three stages. In Stage 1, privately informed Nations choose invest-

ments to alter their exogenously given types. A nation’s type consists of two parameters.

The first is private capital, which consists of the fixed inputs that determine the nation’s

(equivalently, the national firm’s) production technology. The second is adaptation capital,

which determines the relationship between aggregate emission and the damage suffered by

that nation (equivalently, by the national consumer). Adaptation capital consists of all

assets that are used to mitigate the damage caused by emissions, e.g., water and forest

management systems, meteorological facilities, knowledge of the ways to cope with the

effects of pollution, research facilities that generate such technologies, etc. The distinction
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between the two kinds of capital is functional in nature. In Stage 1, each Nation may en-

hance these parameters via investment. In Stage 2, the national governments use the best

response dynamic to negotiate emission caps: given a proposed profile of caps, the new

profile of proposed caps is the profile of best responses to the given profile. As a cap cannot

be imposed on a sovereign nation, the negotiations continue until a stationary profile is

reached.3 In Stage 3, a stationary point of the best response dynamic is implemented as

the profile of caps and the national firm in each nation chooses a production and emission

plan subject to that nation’s emission cap.

We now flesh out the model described above, first with some remarks regarding its

theoretical underpinnings and our motives for constructing such a model, and then some

comments regarding its special features.

The caps negotiated in Stage 2 of the model are self-enforcing as, by definition, no

country can unilaterally improve upon a stationary profile. Accordingly, the first objective

of this paper is to provide a theory of self-enforcing emission cap determination. This in-

volves showing the existence, uniqueness and appropriate stability properties of stationary

profiles of caps, as is done in Section 2.3. Our substantive goal in this paper is to use this

theory to answer the following broad question in a number of settings: given that nations

differ in terms of technology and resources, what investment strategies might a nation (or

its firm) pursue prior to capping so as to bring about an emission cap profile that is optimal

from its point of view?

An issue that is central to a large portion of the comparable literature (see Section

1.2) is a nation’s participation decision vis-a-vis the protocol. We shall formally endo-

genize each nation’s participation decision with respect to the protocol by identifying

“non-participation” with an infinite cap in equilibrium. While we formally allow this pos-

sibility, in equilibrium every nation will accept a finite emission cap that is lower than its

status quo emission level, i.e., every nation will choose to “participate”. As the caps are

incentive compatible (by definition) and implementable by the national governments (by

assumption), the equilibrium aggregate emission will be lower than the status quo level.

Indeed, the equilibrium outcome will be a Pareto improvement over the status quo and

this result does not rely on international transfers.

We assume that the emission rights implied by a cap are not tradeable internationally.

It is natural to wonder why a model with non-tradeable emission rights should even be

considered as voluntary trading after nations are endowed with rights should be Pareto im-

proving. This improvement, however, is merely with respect to the given endowments. In
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our context, endowments of emission rights are not given exogenously but are determined

endogenously via negotiations. Thus, ex ante welfare analysis, i.e., prior to the determi-

nation of emission rights endowments, requires the comparison of equilibrium outcomes

resulting from various arrangements for determining emission rights endowments. In this

paper, we explore the implications of an autarkic post-protocol regime.

Another implicit assumption underlying our approach is that standard tax-subsidy

type remedies for dealing with externalities are inapplicable in the modelled environment

because of the lack of appropriate institutions that can exercise supranational fiscal au-

thority over sovereign nations.

As will become clear, our model applies directly to a pollutant that dissipates quickly

and therefore does not have cumulative effects via its stock. However, it can also be used

as a building block for a model to study the problem of restricting the future flow of a

cumulative pollutant as, at a point of time, accounting and paying for past emissions is an

analytically distinct problem from that of regulating future flows: while the former is the

problem of apportioning a noxious cake of exogenously given size, the latter is the problem

of regulating the marginal externalities generated by future emissions. However, unlike in

the case of evanescent pollutants, cumulative pollutants will require our model to serve as

a stage game in a dynamic game with the pollution stock serving as the state variable.

We now discuss the following features of our model: (a) the dynamic cap negotiation

process, (b) the heterogeneity of nations, (c) the asymmetry of information among the na-

tions, (d) the possibility of manipulating the capping process via the investment decisions,

and (e) the decomposition of nations into entities with divergent attitudes to emissions.

Feature (a) is the technical fulcrum of this paper. For each profile of national types,

the equilibrium profile of caps is the stationary point of the capping negotiations, which

are formalized using the best response dynamic. This formalism has a number of useful

technical properties that enable a general and straightforward attack on our substantive

questions. We first characterize the set of stationary points of the dynamic process as

the set of Nash equilibria of an artificial complete information game. Given this charac-

terization, the existence of stationary points follows simply from an application of Nash’s

existence theorem. Additional natural assumptions regarding the primitives of the model

imply that the artificial game is dominance-solvable. This guarantees the existence of a

unique Nash equilibrium of the artificial game, and therefore, a unique stationary point of

the capping negotiations. Moreover, the steady-state solution of the best response dynam-

ical system corresponding to the unique stationary point is globally asymptotically stable:
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starting from any proposed profile of caps, the negotiations will converge asymptotically to

the unique stationary profile. Pulling together the various technical results, we know that,

for every profile of types, there exists a unique equilibrium profile of caps, and that the

resulting mapping from type profiles to cap profiles is simply characterized and sufficiently

smooth under natural assumptions regarding the primitives of the model. This facilitates

the comparative statics exercises that underly the substantive results. Moreover, as sug-

gested by the correspondence principle, the assumptions that imply the stability properties

of the dynamics also yield useful information for signing the comparative statics exercises.

With respect to feature (b), it is obvious that the potential participants in a capping

regime may be heterogeneous. We model the heterogeneity by allowing national types to

vary across nations and analyze its effects on Stage 2 outcomes (see Proposition 3.1.5 and

Section 3.2). It is also instructive to account for the evolution of national types. We study

this issue by interpreting Stage 1 investment as the means for adjusting a nation’s type.

This allows the analysis of an asymmetry among nations that is distinct from heterogeneity

of types. Since the ability to invest is constrained by a nation’s wherewithal, a second

source of heterogeneity among nations is their differing ability to invest. In Section 4, we

derive a number of results related to strategic investment choices. The political-economic

implications and interpretations are discussed in Section 5.1.

Feature (c) is intended to capture the view that national negotiators have incomplete

information, not only about environmental processes but also about the capabilities of

other nations. Technological innovations that allow the use of new resources, or the more

efficient use of traditional resources, boost the size of private capital. Examples, just in the

energy industry, include the development of non-conventional energy sources and safer nu-

clear technology, new drilling techniques for deep-sea oil and gas exploration, more efficient

use of coal for thermal energy and the improved capture of coal-bed methane. Equally,

new farming techniques, better water management systems and improved meteorologi-

cal forecasting will improve a nation’s ability to deal with environmental degradation, i.e.,

they will increase a nation’s adaptation capital. Given the value of patents for such innova-

tions, especially under an emission-capping regime, such technologies are not symmetrically

available to all nations. Moreover, the complex nature, secrecy and relatively small size of

innovative technology make it unlikely to be inferred accurately from commonly available

aggregative data. This asymmetry is important as bargainers at capping negotiations will

take into account not only their legacy of well-known technology that is embodied in the

commonly available data, but also their knowledge of emerging technologies at the margin.
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Features (d) and (e) are significant innovations in the comparable literature. With

respect to (d), strategic manipulation of protocols has not been studied. With respect to

(e), other models treat the participating nations as unitary entities that choose emissions

and the emission caps, in effect conflating the two variables and identifying the interests

of the entities choosing these variables.4

1.2 The literature

We now describe the theoretical literature on the regulation of international pollution

externalities paying particular attention to whether the model in question assumes: (α)

the existence of robust institutions for enforcing international contracts, (β) that players

are symmetric, and (γ) that players have complete information.

The cooperative game approach. While this literature employs a variety of solution

concepts, the approach using the core (Chander and Tulkens 1992, 1995, 1997) has yielded

the most striking general theoretical results. It characterizes a system of zero-sum transfers

for many-player emission allocation games that implements efficient emission allocations

and satisfies individual and group rationality axioms.

This approach assumes that the members of a coalition of nations can correlate deci-

sions so as to maximize the sum of their utilities, thereby yielding the value of the coalition.

Thus, it implicitly relies on robust institutions for enforcing contracts among coalitions of

nations, as the assumed correlation of decisions cannot be guaranteed otherwise. While

this methodology has no problem dealing with heterogeneous players, the generalization of

cooperative solution concepts to incomplete information environments is very problematic.

Cooperative models implicitly make strong assumptions regarding the existence of

appropriate international institutions and consequently generate large improvements from

the status quo. Our non-cooperative model makes weak institutional assumptions, result-

ing in smaller improvement from the status quo. While the strength of the cooperative

approach is its normative attractiveness, the strength of the non-cooperative approach is

its descriptive plausibility.

The stable coalition approach. Studies such as Barrett (1994), Black et al. (1993) and

Carraro and Siniscalco (1993) adopt a methodology initiated by d’Aspremont et al. (1983)

to study the likely size of a “stable coalition”.5 As this methodology does not slot readily

into either the cooperative or the non-cooperative game categories, we describe it in the

following abstract fashion.

Consider a game in strategic form given by data Γ, with N as the set of players. Given

Γ, we have the family of games {ΓN ′ | N ′ ⊂ N}, where ΓN ′ is the game derived from Γ,
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with N ′ acting as a coalition while the players in N − N ′ act as singletons. N ′ being

a coalition means that the players in N ′ act as a unit and distribute payoffs within the

coalition using some cooperative solution concept. Given a solution concept applicable to

the games in {ΓN ′ | N ′ ⊂ N}, let E(N ′) denote an equilibrium profile of payoffs for the

game ΓN ′ . A coalition N ′ is said to be stable if: (a) E(N ′)i ≥ E(N ′ − {i})i for every

i ∈ N ′, and (b) E(N ′)i ≥ E(N ′ ∪ {i})i for every i ∈ N − N ′. (a) requires that no one

in N ′ should want to defect unilaterally, while (b) requires that no one outside N ′ should

want to join it unilaterally. Clearly, multiple equilibria create severe conceptual problems.

As shown in Tulkens (1998), this approach is not congruent with the cooperative

approach as it does not yield a characteristic function. However, a stable set can be

generated as the Nash equilibrium outcome of the following “metagame”. Consider a

treaty that determines the actions of all players who sign it. If i ∈ N signs (denoted

by action ai = 1), i’s actions in Γ are chosen by the treaty, but otherwise (denoted by

action ai = 0) i acts as a singleton. A profile of actions a = (ai)i∈N generates a coalition

N(a) = {i ∈ N | ai = 1} of players who have signed and a collection of singletons N−N(a)

who have not signed. Thus, a profile of actions a picks out the game ΓN(a). N ′ is a stable

coalition if and only if there is a Nash equilibrium a of the metagame such that N ′ = N(a).

This approach leans very heavily on assumptions (α), (β) and (γ). As in the cooper-

ative approach, (α) is intrinsic to this methodology as it is required to model the collusive

behavior of coalition N ′ in the game ΓN ′ . Indeed, when the above structure is expanded

to allow transfers, (α) is strengthened substantially by allowing various sets of players to

“commit” to being “cooperative”. While some examples with heterogeneous players have

been studied, general results that allow player heterogeneity and incomplete information

are not known.

The cost-effectiveness approach. This approach studies the implications of the postu-

late that nations will seek to implement pollution caps or abatement targets at minimum

abatement cost (Breton et al. 2004, Kaitala et al. 1993, Petrosjan and Zaccour 2003). If

a sufficiently rich set of such strategies is available, then the determination of a profile of

strategies to implement a given profile of emission caps itself becomes a matter of strategic

analysis.

While this approach can explain how a given profile of emission caps may be imple-

mented, it cannot serve our agenda in this paper, which is to generate a theory of how

the emission caps are arrived at in the first place. This is because abatement costs do not

capture fully the costs and benefits from emissions. However, in the spirit of “perfection”,

6



the use of equilibrium cost minimizing strategies after emission rights are awarded should

be anticipated and taken into account when the emission rights are allocated. This refine-

ment does not create difficulties in the model analyzed in the main body of this paper as

the range of implementation options modelled by us is very limited: the only way for a

country to implement an emission cap in our model is to cut domestic emission.

Non-cooperative multi-period approach. A fourth set of studies considers multi-period

games in which each nation chooses how much to emit in every period. The formal frame-

work can be a repeated game, in which the stage-game in every period is identical, or

a dynamic game such as a differential or stochastic game, in which the stage-game is

parametrized by an endogenously-determined time-varying state variable. Although this

literature does not model regulatory interventions via quantitative restrictions on emis-

sions, it does allow for regulation via international fiscal incentives. Even in the absence

of fiscal incentives, the existence of a future in a multi-period game can sustain implicit

agreements in equilibrium, with penal codes (e.g., “grim trigger”, “tit-for-tat”, “carrot-

and-stick”) providing appropriate incentives. Two main issues are considered in this lit-

erature (e.g., Hoel 1993, van der Ploeg and de Zeeuw 1992, Cesar 1994, Dockner and van

Long 1993, Martin et al. 1993): (1) the extent to which implicit cooperation can be induced

in equilibrium, and (2) the extent to which international fiscal incentives can be used to

influence the equilibrium.

The literature addressing (1) applies the so-called folk theorems of game theory; while

an array of such theorems are known for repeated games for a variety of equilibrium con-

cepts, there do not appear to be very general analogous results for dynamic games. With

respect to (2), although fiscal incentives are a standard method of correcting distortions

caused by externalities, the application of fiscal tools across nations requires various facil-

itating international institutions. While this approach does not require assumption (β), it

does rely on assumption (γ).

1.3 Outline of the paper and results

In Section 2.1, we formally state our three stage model. As is standard, the model is

solved backwards. Accordingly, Stages 3, 2 and 1 of the model are studied in Sections 2.2,

2.3 and 2.4 respectively. The equilibrium of the entire model is defined in Section 2.5.

In Section 3, we analyze the outcomes of Stage 2 and derive the comparative statics

results that link the stationary points of the bargaining process to the underlying data

of the model. We use these results in Section 4 to derive the properties of equilibrium
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behavior in Stage 1. We conclude in Section 5 with an interpretation of our results and

suggestions for interesting extensions. The proofs are collected in the Appendix.

Other than the results related to the theory of emission caps determination analyzed

in Section 2.3, we derive two classes of substantive results. First, we derive general compar-

ative statics results (Proposition 3.1.5) that show the systematic and easily interpretable

dependence of the emission caps (i.e., the stationary points of the negotiation process) on

the underlying data consisting of national types. Secondly, we use the comparative statics

results to show (Propositions 4.2.7, 4.2.8, 4.3.4, 4.3.6, 4.4.1) how equilibrium investment

choices in Stage 1 are used to manipulate the equilibrium emission caps. As we show,

the qualitative and quantitative properties of the manipulations that a nation implements

depend systematically on factors such as the nature of technology, the initial endowment

of that nation and whether the investment is made by the state or the emitting firm within

it.

2. The model

2.1 Extensive form

Let N be the set of nations with |N | = n. Nation i’s type space is Θ = <2
+ and the

space of type profiles is Θn. λi ∈ P(Θ) is the common knowledge distribution of Nation

i’s initial type θ̄i. Let λ−i =
∏

j∈N−{i} λj be Nation i’s belief about the initial types of

the other nations.

Nation i consists of Firm i and Consumer i. Nation i’s initial type is a pair (t̄i, k̄i) =

θ̄i ∈ Θ, where t̄i is Firm i’s private capital and k̄i is Consumer i’s adaptation capital. As

per the usual interpretation of “type”, θ̄i is Nation (and Firm) i’s private information.

The play of the game proceeds as follows. After Nature picks a profile of initial

types θ̄ = (θ̄j)j∈N ∈ Θn, the game has three stages: (1) investment, (2) capping, and (3)

production. While the sequencing of stages is important, the passage of time per se is

ignored; consequently, there is no time-discounting.

In Stage 1, the nations simultaneously modify their initial types by investing: if Nation

i invests Ii ∈ Θ, then its type is modified from θ̄i to θ̄i + Ii. The profile of investments

I = (Ij)j∈N ∈ Θn chosen in Stage 1 is common knowledge in Stage 2. In Section 4, we

shall consider a number of variations of this stage, depending on whether Nation i or Firm

i chooses Ii and bears the resulting cost.

In Stage 2, with Nation i knowing θ̄i and I, the nations negotiate to determine the

emission caps to be allocated to the various nations. We model the negotiations formally
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using the best response dynamic procedure and postulate that the implemented profile of

caps, e ∈ <̄n
+, is a stationary point of this dynamic procedure. In Section 2.3, we show

that the set of stationary points of the dynamic process is identical to the set of Nash

equilibria of a complete information game denoted G(θ̄, I), where θ̄ = (θ̄j)j∈N . Given this

characterization, the existence of stationary points is easy to demonstrate using Nash’s

existence theorem (see Moulin 1986). Moreover, this characterization is exploited in Sec-

tions 3 and 4 to derive the substantive results of this paper. There are additional reasons

for seeing the stationary points as compelling predictions of the negotiations. We will

provide a simple condition to supplement our primitive assumptions that will ensure that

G(θ̄, I) is dominance-solvable. This will guarantee the existence of a unique Nash equi-

librium of G(θ̄, I), and therefore, a unique stationary point of the best response dynamic

process. Consequently, the steady-state solution of the dynamical system corresponding to

the unique stationary point is globally asymptotically stable: starting from any proposed

profile of caps, the dynamic process will drive the proposed profiles of caps towards the

unique stationary profile.

In Stage 3, Firm i knows θ̄i, I and e, and chooses variable input vi, which determines

Firm (and Nation) i’s profit and emission.The profile of emissions by all the nations de-

termine the damage suffered by Consumer (and Nation) i. The choice of vi is subject to

the constraint that the resulting emission cannot exceed Nation i’s cap ei.

Suppose Nation i’s modified type is θi = (ti, ki). If Firm i employs variable input

vi, then Firm (and Nation) i’s profit is g(ti, vi) and its emission is h(ti, vi) ≤ ei; g and

h are to be interpreted as incorporating the effects of domestic regulations, e.g., emission

taxes and subsidies for adoption of clean technologies, other than the quantity-rationing

implied by the emission rights regime. The resulting total world emission
∑

j∈N h(tj , vj)

is consumed by the consumer of every nation and this causes damage δ(ki,
∑

j∈N h(tj , vj))

to Consumer (and Nation) i.

2.2 Stage 3: properties of optimal action and value functions

Suppose the profile of modified types is θ and the profile of emission caps is e. Given

this data, we analyze Firm i’s decision-making assuming that it maximizes its profit.

Assumption 2.2.1. g : <2
+ → <+ and h : <2

+ → <+ are continuous functions such that,

for every t ∈ <+,

(a) g(t, .) has a unique maximum at V (t) where V : <+ → <++ is continuous,
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(b) g(t, .) is strictly increasing on [0, V (t)] and strictly concave on <+, and

(c) h(t, 0) = 0 and h(t, .) is strictly increasing and strictly convex.

(a) and (b) imply that profit increases with variable input until the unconstrained

maximum is attained and use of the variable input faces diminishing returns. (c) implies

that emission increases at an increasing rate with the variable input.

Consider a firm with modified private capital by t ∈ <+ and emission cap e ∈ <̄+.

The firm’s problem is to choose variable input v to maximize profit g(t, v) subject to

the constraint h(t, v) ≤ e. Since V (t) is an unconstrained optimal choice for the firm and

h(t, .) is increasing, the firm’s constraint can be written as v ∈ Γ(t, e) ≡ {v ∈ <+ | h(t, v) ≤
e} ∩ [0, V (t)].

Let v : <+ × <̄+ → <+ be such that, for every (t, e) ∈ <+ × <̄+, v(t, e) solves the

firm’s problem; consequently, for every (t, e) ∈ <+ × <̄+, we have h(t, v(t, e)) ≤ e. Define

f : <+ × <̄+ → < by f(t, e) = g(t, v(t, e)). Consequently, Firm i’s choice of variable input

is v(ti, ei), its profit is f(ti, ei) and its emission is h(ti, v(ti, ei)). The next result records

some consequences of the above structure.

Proposition 2.2.2. Given Assumption 2.2.1,

(A) for every (t, e) ∈ <+ × <̄+ there exists a unique v(t, e) ∈ Γ(t, e) such that

g(t, v(t, e)) ≥ g(t, v) for every v ∈ Γ(t, e), and

(B) v : <+ × <̄+ → <+ and f : <+ × <̄+ → < are continuous functions.

Moreover, for every (t, e) ∈ <+ × <̄+,

(C) e ≥ h(t, V (t)) if and only if v(t, e) = V (t), and

(D) e ≤ h(t, V (t)) if and only if h(t, v(t, e)) = e.

Furthermore, for every t ∈ <+,

(E) f(t, .) is strictly increasing on [0, h(t, V (t))],

(F) f(t, .) is strictly concave on [0, h(t, V (t))], and

(G) f(t, e) = g(t, V (t)) for e ≥ h(t, V (t)).

V (t) may be interpreted as the status quo, i.e., prior to emission capping, level of vari-

able input use. Therefore, g(t, V (t)) and h(t, V (t)) are the status quo profit and emission.

Thus, a cap e is a binding constraint on the firm if and only if e ≤ h(t, V (t)). Given our

interpretation of V (t), the above results have straightforward interpretations.

2.3 Stage 2: existence, uniqueness and stability of stationary points

Suppose the profile of initial types is θ̄ and the profile of investments in Stage 1 is I,

resulting in the profile of modified types θ = θ̄ + I = (tj , kj)j∈N . Suppose the profile of
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emission caps e = (ej)j∈N ∈ <̄n
+ is proposed publicly by an uninformed mediator, i.e., one

who is not privy to the types of the various nations. The nations inform the mediator about

their best response to the proposed profile. The best responses are used as the proposals for

the next round and the procedure carries on iteratively. A stationary point of this procedure

is the finally implemented profile of caps.

To ease analysis, we enrich Assumption 2.2.1 as follows. Henceforth, a function being

Cp means it is p times continuously differentiable on the specified set.

Assumption 2.3.1. In addition to the requirements of Assumption 2.2.1, suppose that,

(a) for every t ∈ <+, g(t, .) and h(t, .) are C1 on <++, and

(b) for every k ∈ <+, δ(k, .) is continuous, C1 on <++, strictly increasing and strictly

convex.

The smoothness assumptions are for made to obtain simple characterizations. (b) also

assumes that damage increases at an increasing rate with respect to total emission. We

note some consequences.

Proposition 2.3.2. Given Assumption 2.3.1 and t ∈ <+,

(A) Dvg(t, V (t)) = 0,

(B) Dev(t, e) = 0 and Dvg(t, v(t, e)) = 0 for e > h(t, V (t)),

(C) v(t, .) is C1 on (0, h(t, V (t))), and

(D) g(t, v(t, .)) is C1 on (0, h(t, V (t))) ∪ (h(t, V (t)),∞).

Description of dynamic negotiation procedure. Suppose a profile of caps e ∈ <̄n
+ is

proposed. Given e, we say that Nation i accepts ei if there is no alternative cap for i that

is preferred to ei, assuming that the caps e−i will be implemented by the other nations.

Since caps cannot be imposed exogenously on sovereign nations, assuming that the other

nations will implement e−i amounts to assuming that every Nation j ∈ N − {i} accepts

ej given e.

Let Λi(I, e−i) be Nation i’s belief about θ−i, conditional on (a) private information

θi, (b) public information I, and (c) the assumption that the other nations accept the caps

e−i. Thus, Nation i’s conditional expected payoff from accepting ei is Ui(θi, I, e), given by

f(ti, ei)−
∫

Θn−1
Λi(I, e−i, dx) δ


ki, h(ti, v(ti, ei)) +

∑

j∈N−{i}
h(tj(x), v(tj(x), ej))




(2.3.3)
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The equal weights we have given to the national firm and the national consumer in speci-

fying Ui are just a matter of notational convenience; specifying other weights will increase

the number of model parameters but not affect the nature of our results. The set of Nation

i’s best responses to a proposal e is

βi(e−i; θi, I) =
⋂

x∈<̄+

{b ∈ <̄+ | Ui(θi, I, b, e−i) ≥ Ui(θi, I, x, e−i)}

We require that a proposal e be implemented only if it is accepted by all nations, i.e.,

ej ∈ βj(e−j ; θj , I) for every j ∈ N . As there is no guarantee that an uninformed mediator

will pick a proposal e that all nations will accept, we require that the mediator make

fresh proposals until one is accepted by all nations. A new proposal is generated from the

current one by using the best response dynamic:

ej(τ + 1) = βj(e−j(τ); θj , I) (2.3.4)

for j ∈ N and τ ∈ N , where τ represents time.6 We say that e ∈ <̄n
+ is a stationary point

of (2.3.4), given (θ, I) ∈ Θn ×Θn, if ej = βj(e−j ; θj , I) for every j ∈ N .

Characterization of best response mapping. We begin our analysis of (2.3.4) by charac-

terizing Nation j’s best responses to a given proposal e. In principle, it seems possible that

h(tj , v(tj , b)) < b for some b ∈ βj(e−j ; θj , I), i.e., Nation j’s actual emission given a best

response cap might be less than the cap. This divergence can complicate the analysis of

emission capping as the costs and benefits of capping are generated by the actual emissions

that result from capping, rather than the caps per se. The following result eliminates this

potential problem.

Proposition 2.3.5. Given Assumption 2.3.1, j ∈ N , (tj , kj) = θj ∈ Θ and e ∈ <̄n
+, if

b ∈ βj(e−j ; θj , I), then h(tj , v(tj , b)) = b < h(tj , V (tj)).

We immediately have the following consequences.

Corollary 2.3.6. Nation i’s belief that the other nations will accept the caps e−i amounts

to believing, almost surely, that ej ∈ βj(e−j ; θj , I) for every j ∈ N −{i}. Thus, for almost

every (tj , kj)j∈N−{i} ∈ supp Λi(I, e−i) and for every j ∈ N − {i}, h(tj , v(tj , ej)) = ej <

h(tj , V (tj)). This simplifies (2.3.3) to

Ui(θi, I, e) = f(ti, ei)− δ


ki, h(ti, v(ti, ei)) +

∑

j∈N−{i}
ej


 ≡ ui(θi, e) (2.3.7)
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Using Proposition 2.2.2,

ui(θi, e) =





f(ti, ei)− δ
(
ki,

∑
j∈N ej

)
, if ei ∈ [0, h(ti, V (ti))]

f(ti, ei)− δ
(
ki, h(ti, V (ti)) +

∑
j∈N−{i} ej

)
, if ei > h(ti, V (ti))

(2.3.8)

Corollary 2.3.9. (2.3.7) and Proposition 2.3.5 imply

βi(e−i; θi, I) =
⋂

x∈<̄+

{b ∈ <̄+ | ui(θi, b, e−i) ≥ ui(θi, x, e−i)} ⊂ [0, h(ti, V (ti))) (2.3.10)

Combining (2.3.8), Proposition 2.2.2(F) and Assumption 2.3.1(b), ui(θi, ., e−i) is strictly

concave on [0, h(ti, V (ti))]. Therefore, Nation i’s best response is unique, i.e., βi(.; θi, I) is

a function, which justifies formula (2.3.4). As ui depends only on Nation i’s modified type

θi, and not directly on I, we may replace βi(e−i; θi, I) by βi(e−i; θi) in (2.3.4).

Corollary 2.3.11. If e is a stationary point of (2.3.4), then ej < h(tj , V (tj)) for every

j ∈ N , i.e., in equilibrium, every nation accepts to cap its emission strictly below the level

that the domestic firm would choose in the absence of capping.

Thus, Proposition 2.3.5 has a number of useful implications. First, it reduces the num-

ber of variables involved in the analysis of an equilibrium by identifying equilibrium caps

with equilibrium emissions. Secondly, the complicated expected damage term in (2.3.3) is

simplified to the damage term in (2.3.7). This is a vital simplification as it ensures that

the private values assumption is satisfied when equilibrium caps are identified. Thirdly,

Nation i’s payoff in the relevant range [0, h(ti, V (ti))] is not monotonically increasing with

respect to ei, for a larger cap in this range induces greater emission by Firm i, thereby

increasing Firm i’s profit, but also increasing Consumer i’s damage. Thus, by attaching

an endogenously generated shadow value to emission rights in the form of damages, our

model forces nations to trade-off profits against damages, thereby preventing them from

pursuing arbitrarily large caps. Consequently, results in Section 4 asserting that a nation

manipulates its type to increase its emission cap do not reflect a trivial desire to have an

arbitrarily large amount of a free positive-valued option, but a desire to have a specific

larger cap for strategic reasons.

Existence, uniqueness and stability of stationary points. Given θ = (θj)j∈N ∈ Θn,

where θj = (tj , kj) is Nation j’s modified type, define the non-cooperative game

G(θ) = {N, ([0, h(tj , V (tj))], uj(θj , .))j∈N} (2.3.12)

where N is the set of players, [0, h(tj , V (tj))] is player j’s strategy space and uj(θj , .) :∏
r∈N [0, h(tr, V (tr))] → < is player j’s payoff function.
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Proposition 2.3.13. Given θ ∈ Θn, e∗ is a stationary point of (2.3.4) if and only if e∗ is

a Nash equilibrium of G(θ).

Needless to say, this result neither assumes nor implies that the nations are playing

G(θ) in Stage 2. However, the characterization is very useful as it allows the application of

many standard results; e.g., an application of Nash’s existence theorem yields the following.

Proposition 2.3.14. Given Assumption 2.3.1 and θ ∈ Θn,

(A) there exists a stationary point of (2.3.4), and

(B) if e is a stationary point of (2.3.4), then e ∈ ∏
j∈N [0, h(tj , V (tj))).

Theorem 3 in Moulin (1986) implies the following strong result.

Proposition 2.3.15. If Assumption 2.3.1 is satisfied and

−Deef(tj , ej) > (n− 2)De+e+δ(ki, e+) (2.3.16)

for every j ∈ N and e ∈ ∏
j∈N [0, h(tj , V (tj))], then G(θ) is dominance-solvable and has a

unique Nash equilibrium that is globally asymptotically stable with respect to (2.3.4).

Combining this result with Proposition 2.3.13, we have

Corollary 2.3.17. Given the assumptions of Proposition 2.3.15, (2.3.4) has a unique

stationary point that is globally asymptotically stable.

Thus, given appropriate assumptions, the postulated negotiation process converges

to the same stationary point, independent of the initial proposed profile. For n = 2,

Assumption 2.3.1 implies that (2.3.16) holds trivially, and therefore the conclusions of

Corollary 2.3.17 hold automatically. (2.3.16) becomes easier to satisfy as (a) n decreases,

(b) the curvature of f increases, and (c) the curvature of δ decreases.

Welfare properties of stationary points. Proposition 2.3.14(B) implies that e ¿
(h(tj , V (tj)))j∈N for every stationary point e of (2.3.4). Compared to the status quo,

every consumer is better off and every firm is worse off. From the perspective of the na-

tions, the stationary point represents a Pareto improvement over the status quo. Indeed,

the stationary profile is Pareto superior to every intermediate profile also.

Proposition 2.3.18. Suppose Assumption 2.3.1 is satisfied. If e is a stationary point of

(2.3.4) and z ∈ ∏
j∈N [ej , h(tj , V (tj))]− {e}, then ui(θi, z) < ui(θi, e) for every i ∈ N .

2.4 Stage 1: definition of equilibrium investment choices
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Suppose it is anticipated that the emission caps accepted in Stage 2 will be generated

by a function (θ̄, θ) 7→ e(θ̄, θ) ∈ <̄n
+, where θ̄ ∈ Θn is the profile of initial types and θ is

the profile of modified types. I = θ− θ̄ is the profile of investments. Let investment Ii cost

C(Ii) to Nation i.

If the profile of initial types is θ̄ and the profile of Stage 1 investments is I, then

Nation i’s payoff is ui(θ̄i + Ii, e(θ̄, θ̄ + I))−C(Ii), where the first term is given by (2.3.8);

indeed, if e(θ̄, θ̄ + I) is a stationary point, then Corollary 2.3.11 implies that the first line

of (2.3.8) applies. We assume that the profile of investments is generated by a Bayesian

equilibrium (σi)i∈N , where Nation i’s strategy σi : Θ → Θ is such that, for every θ̄i ∈ Θ,

Ii = σi(θ̄i) maximizes

∫

Θn−1
λ−i(dθ̄−i) ui(θ̄i + Ii, e(θ̄i, θ̄−i, θ̄i + Ii, θ̄−i + σ−i(θ̄−i)))− C(Ii) (2.4.1)

Rational behavior in this environment amounts to being a Bayesian decision-maker, i.e.,

every nation should maximize its subjective expected payoff conditional on its type and

some belief regarding the decisions of the other nations, or equivalently as in (2.4.1), some

belief about the types and strategies of the other nations. In addition to rationality, a

Bayesian equilibrium requires the profile of beliefs and strategies to be consistent, i.e.,

the subjective belief of every nation should be justified by the actual strategies of the

other nations. We shall be content to characterize Bayesian equilibrium strategies without

attempting to prove the existence of such an equilibrium.

2.5 Equilibrium

We now pull together the discussion of Sections 2.1 to 2.4 in the following definition.

Definition 2.5.1. {(σi)i∈N , e, v} is an equilibrium if it satisfies the following properties.

(a) v : <+ × <̄+ → <+ is such that, for every (t, e) ∈ <+ × <̄+, v = v(t, e) maximizes

g(t, v) subject to the constraint h(t, v) ≤ e.

(b) e : Θn × Θn → <n
+ is such that, for every j ∈ N and every (θ̄, θ) ∈ Θn × Θn,

ej = ej(θ̄, θ) maximizes uj(θj , e−j(θ̄, θ), ej).

(c) for every i ∈ N , σi : Θ → Θ is such that σi(θ̄i) maximizes (2.4.1) for every θ̄i ∈ Θ.

3. Analysis of Stage 2 outcomes

3.1 Comparative statics
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In this section we analyze the properties of the mapping e : Θ2 × Θ2 → <2
+ that

describes stationary cap profiles. We simplify notation in this section by suppressing the

profile of initial types θ̄; thus, e(θ̄, θ) is abbreviated to e(θ). Moreover, using Proposition

2.3.5, e(θ) may be referred to as the profile of emissions (identical to the profile of emission

caps) when the profile of modified types is θ. Naturally, variations in the modified type θi

reflect one-for-one the variations of the investments Ii. This analysis requires assumptions

regarding the effects of type variations on emission, profit and damage.

Assumption 3.1.1. In addition to Assumption 2.3.1 and (2.3.16), assume that

(a) for every v ∈ <+, g(., v) is strictly increasing and h(., v) is strictly decreasing,

(b) for every e ∈ <+, f(., e) is strictly concave,

(c) g and h are C3 and δ is C2 on <2
++.

(d) Dke+δ < 0, and

(e) for every e+ ∈ <+, δ(., e+) is strictly decreasing and strictly convex.

(a) implies that profit is increasing and emission is decreasing with respect to private

capital. (b) implies that private capital faces diminishing returns. (d) implies that greater

adaptation capital reduces a nation’s vulnerability to damage. (e) means that a nation’s

damage decreases with adaptation capital but this beneficial effect is subject to diminishing

returns. We note the following consequences of these assumptions.

Proposition 3.1.2. Given Assumption 3.1.1,

(A) v and f are C2 on {(t, e) ∈ <2
++ | e < h(t, V (t))},

(B) given e, t, t′ ∈ <+, if t < t′, e ≤ h(t, V (t)) and e ≤ h(t′, V (t′)), then f(t, e) <

f(t′, e), and

(C) ui is C2 at (θi, e) ∈ <4
++ such that ei < h(ti(θi), V ◦ ti(θi)).

Let j ∈ N and θ ∈ ΘN . By Definition 2.5.1(b), ej = ej(θ) maximizes uj(θj , ej , e−j(θ)).

Proposition 2.3.5 implies ej(θ) < h(tj(θ), V ◦tj(θ)). Therefore, Proposition 3.1.2(C) implies

that uj(θj , ., e−j(θ)) is C2 at ej(θ). Thus, we have the first order condition for every j ∈ N :

Dej uj(θj , e(θ)) = 0 (3.1.3)

Dej uj(θj , e(θ)) is the shadow value of emission rights to Nation j of type θj when the

emission cap profile is e(θ). Thus, (3.1.3) means that, in equilibrium, the shadow value of

emission rights for every nation is equal to the cost of acquiring the marginal right, which

is zero. Analogously, Def(tj , ej) is the shadow value of emission rights to Firm j with
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private capital tj when Nation j’s emission cap is ej . It follows from Proposition 2.2.2

that the firm’s shadow value of emission rights is positive in equilibrium. Thus, ceteris

paribus, the national firm will prefer a larger cap than the equilibrium one negotiated by

the national government. This divergence of interests will explain differences between the

socialist and capitalist cases considered in Sections 4.2 and 4.3.

Combining Propositions 2.2.2(F) and 3.1.2(A) with Assumptions 3.1.1(c) and 2.3.1(b)

implies the second order condition

Dejej
uj(θj , e(θ)) < 0 (3.1.4)

for every j ∈ N . The effects on e(θ) of varying either component of θ1 are as follows; with

appropriate notational adjustments, the same result holds for all nations.

Proposition 3.1.5. Given Assumption 3.1.1, and interpreting x as either t1 or k1,

(A) Sign Dxej = −Sign De1xu1 for j ∈ N − {1},
(B) Sign Dxe1 = Sign De1xu1, and

(C) Sign Dx

∑
j∈N ej = Sign De1xu1.

Evidently, the signs of all the variational formulae depend on how the type variations

affect the shadow values of emission rights for the nation whose type is being perturbed.

3.2 Applications

We set N = {1, 2} in the following applications. As should be clear from the proofs

and Proposition 3.1.5, these results apply to any pair of nations in N . The following

definition classifies technology as locally clean (resp. dirty) if the firm’s shadow value of

emission rights decreases (resp. increases) with increases in private capital.

Definition 3.2.1. Technology f is dirty (resp. clean) at (t′, e′) if Dtef(t′, e′) > 0 (resp.

Dtef(t′, e′) < 0).

Corollary 3.2.2. Let N = {1, 2} and θ = ((t1, k1), (t2, k2)). Given e(θ) = (e1(θ), e2(θ)),

let e−(θ) = e1(θ)− e2(θ).

(A) If Dtef(t1, e1(θ)) < 0, then Dt1e1(θ) < 0, Dt1e2(θ) > 0, Dt1e+(θ) < 0 and

Dt1e−(θ) < 0.

(B) If Dtef(t1, e1(θ)) > 0, then Dt1e1(θ) > 0, Dt1e2(θ) < 0, Dt1e+(θ) > 0 and

Dt1e−(θ) > 0.

(C) Dk1e1(θ) > 0, Dk1e2(θ) < 0 and Dk1e+(θ) > 0.
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(A) (resp. (B)) means that the growth of private capital in a clean (resp. dirty) nation

implies lower (resp. higher) domestic emission, higher (resp. lower) foreign emission, lower

(resp. higher) aggregate emission, and assuming e−(θ) > 0, convergence (resp. divergence)

of national emissions. (C) means that the growth of adaptation capital implies higher

domestic emission, lower foreign emission and higher aggregate emission. We next derive

the ordering of emission caps implied by the ordering of adaptation capital.

Corollary 3.2.3. If N = {1, 2}, θ = ((t, k1), (t, k2)) and k1 > k2, then e1(θ) > e2(θ).

Ceteris paribus, nations with more adaptation capital have larger emissions. In the

case of private capital, the analogous result is more complicated as the nature of technology

affects the directions in which the emissions change as private capital varies.

Corollary 3.2.4. If N = {1, 2}, and

(a) θ = ((t1, k), (t2, k)) and t1 > t2,

(b) Dtef(t1, e1(θ)) > 0 and Dtef(t2, e2(θ)) > 0 (resp. Dtef(t1, e1(θ)) < 0 and

Dtef(t2, e2(θ)) < 0), and

(c) for every e′, Dtef(., e′) is decreasing,

then e1(θ) > e2(θ) (resp. e1(θ) < e2(θ)).

If (a) both nations have the same adaptation capital stock, (b) both nations have clean

(resp. dirty) technology, and (c) technology becomes cleaner as private capital grows, then

the nation with the greater private capital stock has lower (resp. higher) emission.

4. Analysis of Stage 1 choices

4.1 Set-up

In this section we analyze Nation 1’s choices in Stage 1. In Section 4.2, we consider the

“socialist” case: investment in Nation 1’s private and adaptation capital is chosen by the

government. In Section 4.3, we consider the “capitalist” case: Firm 1 chooses investment

in Nation 1’s private and adaptation capital. In Section 4.4, we consider the “global” case

when Nation 1 or Firm 1 can choose foreign adaptation and private capital. It is also possi-

ble to consider the mixed economy case when the government chooses Nation 1’s domestic

adaptation capital while Firm 1 chooses domestic private capital. Since these decision-

makers have different objectives, their joint decisions have to conform to some notion of

equilibrium. The joint decisions can be modelled using Nash equilibrium as the solution
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concept. However, we do not present the details here as the results qualitatively mimic

those of Sections 4.2 and 4.3, and the analysis does not throw up any new phenomena.

Let {(σi)i∈N , e, v} satisfy Definition 2.5.1. We studied v in Section 2.2, and e in

Sections 2.3 and 3. Finally, we study (σi)i∈N to derive the motives guiding the investments

in Stage 1. It suffices to study the decision-making of just one nation, say Nation 1, as

the same arguments apply to every nation. For notational and expositional simplicity, we

study a special case of our model.

Assumption 4.1.1. The special model is specified by the following assumptions:

(a) N = {1, 2},
(b) θ̄1 ≡ 0 ∈ <2, and

(c) C(x, y) = x + y.

By Proposition 3.1.5(A), the directional effect of Nation 1’s Stage 1 choice on the

equilibrium Stage 2 outcomes is identical across the other nations. Given that the results

in this section rely only on this directional effect, we may replace N − {1} with a repre-

sentative Nation 2 without loss of generality, as we do in Assumption (a). Assumption (b)

is a change-of-origin so that we can ignore non-negativity constraints that would result

from positive initial levels of private and adaptation capital and an inability to choose

smaller levels by disinvesting. As θ̄1 ≡ 0, we lighten notation by eliminating it from our

expressions. Assumption (c) allows investment to move without friction between private

and adaptation capital. Our piecemeal analysis of investment decisions is without loss of

generality because the cost of investments is linear and additive. This allows us to focus

on the strategic role of these investments.

Assumption 4.1.2. {(σi)i∈N , e, v} is an equilibrium of the special model such that

(a) σ1(0) = (t1, k1) À 0, and

(b) e(θ̄2, I1, θ̄2 + I2) ∈ <2
++ for (θ̄2, I1, θ̄2 + I2) ∈ Θ×Θ2.

4.2 The socialist case

If Nation 1’s investment is I1 = (t1, k1) and Nation 2’s type is θ̄2, then Nation 1’s

payoff is u1(I1, e(θ̄2, I1, θ̄2 + σ2(θ̄2))) − C(I1). Consequently, Nation 1’s Stage 1 problem

is: choose I1 = (t1, k1) ∈ Θ to maximize

∫

Θ

λ2(dθ̄2)u1(I1, e(θ̄2, I1, θ̄2 + σ2(θ̄2)))− C(I1) (4.2.1)
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Let e : Θ2×Θ2 → <2
+ be such that, for every (θ̄, θ) ∈ Θ2×Θ2, e(θ̄, θ) is accepted by both

nations. Given e, let I1 solve (4.2.1). Let I ′1 ∈ Θ maximize
∫

Θ

λ2(dθ̄2)u1(I ′1, e(θ̄2, I1, θ̄2 + σ2(θ̄2)))− C(I ′1) (4.2.2)

Clearly, Nation i prefers θ′1 to θ1 ex post. The difference between θ′1 and θ1 represents

Nation 1’s ability to manipulate the choice of caps in Stage 2 by affecting the choice of the

Stage 2 continuation game via its Stage 1 choice of investment.

Let (t∗, k∗) À (0, 0) solve (4.2.1). Simplify notation by denoting e(θ̄2, t
∗, k∗, θ̄2 +

σ2(θ̄2)) by e∗(θ̄2). Using (3.1.3), (t∗, k∗) is characterized by
∫

Θ

λ2(dθ̄2)
[
Dtf(t∗, e∗1(θ̄2))−De+δ(k∗, e∗+(θ̄2))Dte

∗
2(θ̄2)

]
= 1 (4.2.3)

∫

Θ

λ2(dθ̄2)
[
Dkδ(k∗, e∗+(θ̄2)) + De+δ(k∗, e∗+(θ̄2))Dke∗2(θ̄2)

]
= −1 (4.2.4)

First consider the choice of adaptation capital. Combining Assumption 2.2.1, Propo-

sition 2.2.3(A) and Corollary 3.2.2(C), the benefits of investment in adaptation capital are:

(a) an increase in domestic profit caused by higher domestic emission, (b) lower domestic

vulnerability to damage, and (c) a decrease in domestic damage on account of lower foreign

emission. The costs are: (d) an increase in domestic damage caused by higher domestic

emission, and (e) the opportunity cost of investment. In equilibrium, each nation’s emis-

sion (cap) is chosen to balance benefit (a) and cost (d) at the margin. Thus, (4.2.4) ensures

that marginal benefits (b) and (c) are balanced by the marginal cost (e). (b) is the direct

benefit of investment in adaptation capital, while (c) is the indirect or strategic benefit.

Let (t0, k0) be Nation 1’s choice of private and adaptation capital given the type

contingent emissions θ̄2 7→ e∗(θ̄2), i.e., (t1, k1) = (t0, k0) maximizes (4.2.2). Then, (t0, k0)

satisfies ∫

Θ

λ2(dθ̄2)Dtf(t0, e∗1(θ̄2)) = 1 (4.2.5)
∫

Θ

λ2(dθ̄2) Dkδ(k0, e∗+(θ̄2)) = −1 (4.2.6)

k∗ > k0 (resp. k∗ < k0) is interpreted as strategic overinvestment (resp. underinvestment)

by Nation 1 in domestic adaptation capital. (4.2.4), (4.2.6), Assumption 2.3.1(b) and

Corollary 3.2.2(C) imply
∫

Θ

λ2(dθ̄2)Dkδ(k0, e∗+(θ̄2)) =
∫

Θ

λ2(dθ̄2)
[
Dkδ(k∗, e∗+(θ̄2)) + De+δ(k∗, e∗+(θ̄2))Dke∗2(θ̄2)

]

<

∫

Θ

λ2(dθ̄2) Dkδ(k∗, e∗+(θ̄2))
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i.e.,
∫
Θ

λ2(dθ̄2)
∫ k0

k∗ dxDkkδ(x, e∗+(θ̄2)) < 0. Assumption 3.1.1(e) implies k0 < k∗.

Proposition 4.2.7. Nation 1 overinvests in domestic adaptation capital, thereby strate-

gically raising e1, lowering e2 and raising e+.

Now consider the choice of private capital. t∗ > t0 (resp. t∗ < t0) is interpreted as

strategic overinvestment (resp. underinvestment) by Nation 1 in domestic private capital.

Proposition 4.2.8. If Dtef(t∗, e∗1(θ̄2)) < 0 (resp. Dtef(t∗, e∗1(θ̄2)) > 0) for every θ̄2 ∈
supp λ2, then Nation 1 underinvests (resp. overinvests) in domestic private capital, thereby

strategically raising e1, lowering e2 and raising e+.

Proof. Suppose Dtef(t∗, e∗1(θ̄2)) < 0 for every θ̄2 ∈ suppλ2. Then, (4.2.3), (4.2.5), As-

sumption 2.3.1(b) and Corollary 3.2.2(A) imply
∫

Θ

λ2(dθ̄2)Dtf(t0, e∗1(θ̄2)) =
∫

Θ

λ2(dθ̄2)
[
Dtf(t∗, e∗1(θ̄2))−De+δ(k∗, e∗+(θ̄2))Dte

∗
2(θ̄2)

]

<

∫

Θ

λ2(dθ̄2) Dtf(t∗, e∗1(θ̄2))

i.e.,
∫
Θ

λ2(dθ̄2)
∫ t0

t∗ dxDttf(x, e∗1(θ̄2)) < 0. Assumption 3.1.1(b) implies t0 > t∗. The other

case is analogous.

Since, in equilibrium, e1 is a best response to e2 in terms of Nation 1’s preference, we

have the following observation.

Remark 4.2.9. Nation 1’s strategic manipulations (see (4.2.3) and (4.2.4)) in Proposi-

tions 4.2.7 and 4.2.8 work by manipulating downwards Nation 2’s emission.

4.3 The capitalist case

Suppose Firm 1 chooses investment I1 = (t1, k1). If Firm 1’s investment is (t1, k1)

and Nation 2’s type is θ̄2, then Firm 1’s payoff is f(t1, e1(θ̄2, t1, k1, θ̄2 + σ2(θ̄2)))− t1 − k1.

Assuming Nation 1 and Firm 1 have identical information, Firm 1’s Stage 1 problem is:

choose (t1, k1) ∈ Θ to maximize
∫

Θ

λ2(dθ̄2) f(t1, e1(θ̄2, t1, k1, θ̄2 + σ2(θ̄2)))− t1 − k1 (4.3.1)

Let (t1, k1) = (t∗∗, k∗∗) À (0, 0) maximize (4.3.1). We simplify notation by writing

e(θ̄2, t
∗∗, k∗∗, θ̄2 + σ2(θ̄2)) as e∗∗(θ̄2). (t∗∗, k∗∗) is characterized by

∫

Θ

λ2(dθ̄2) [Dtf(t∗∗, e∗∗1 (θ̄2)) + Def(t∗∗, e∗∗1 (θ̄2))Dte
∗∗
1 (θ̄2)] = 1 (4.3.2)

∫

Θ

λ2(dθ̄2)Def(t∗∗, e∗∗1 (θ̄2))Dke∗∗1 (θ̄2) = 1 (4.3.3)
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Let (t00, k00) be Firm 1’s choice of private and adaptation capital given the type contingent

emissions θ̄2 7→ e∗∗(θ̄2). k∗∗ > k00 (resp. k∗∗ < k00) indicates overinvestment (resp.

underinvestment) in adaptation capital. Similarly, t∗∗ > t00 (resp. t∗∗ < t00) indicates

overinvestment (resp. underinvestment) in private capital. Clearly, k00 = 0. Therefore,

k∗∗ > 0 represents overinvestment by Firm 1 in adaptation capital. Copying the proofs of

Propositions 4.2.7 and 4.2.8, we have

Proposition 4.3.4. Propositions 4.2.7 and 4.2.8 hold with “Firm 1” replacing “Nation

1”.

Nation 1’s equilibrium emission is a best response to foreign emission, arrived at

by balancing domestic profit considerations against domestic damage considerations. As

Firm 1 does not take domestic damage into account, Nation 1’s equilibrium emission is

sub-optimal from Firm 1’s perspective. Moreover, unlike Nation 1, Firm 1 is indifferent to

foreign emission. This leads to the following observation, which may be contrasted with

Remark 4.2.9.

Remark 4.3.5. Firm 1’s strategic manipulations (see (4.3.2) and (4.3.3)) in Proposition

4.3.4 work by manipulating upwards Nation 1’s emission.

We now ask: in what directions would Nation 1 like to perturb Firm 1’s choice

(t∗∗, k∗∗)? Let G(t1, k1) =
∫
Θ

λ2(dθ̄2)u1(t1, k1, e(θ̄2, t1, k1, θ̄2 + σ2(θ̄2))) − t1 − k1. (4.3.2)

implies that DtG(t∗∗, k∗∗) = − ∫
Θ

λ2(dθ̄2)De+δ(k∗∗, e∗∗+ (θ̄2))Dte
∗∗
+ (θ̄2). Therefore, As-

sumption 2.3.1(b) and Corollary 3.2.2 imply

Proposition 4.3.6. If Dtef(t∗∗, e∗∗1 (θ̄2)) < 0 (resp. Dtef(t∗∗, e∗∗1 (θ̄2)) > 0) for every

θ̄2 ∈ supp λ2, then Nation 1 prefers a higher (resp. lower) level of private capital than

Firm 1.

(4.3.3) implies that Nation 1’s incentive for marginal domestic adaptation invest-

ment is DkG(t∗∗, k∗∗) = − ∫
Θ

λ2(dθ̄2) [Dkδ(k∗∗, e∗∗+ (θ̄2)) + De+δ(k∗∗, e∗∗+ (θ̄2))Dke∗∗+ (θ̄2)].

Assumptions 2.3.1(b) and 3.1.1(e), and Corollary 3.2.2(C), imply that this marginal in-

centive cannot be signed unambiguously as an increase in Nation 1’s adaptation capital

has two opposing effects on Nation 1’s damage. On the one hand, it directly decreases

domestic damage (the direct effect), but on the other hand, it increases domestic damage

by inducing higher total emission (the indirect effect).
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Remark 4.3.7. If the direct effect is larger (resp. smaller) than the indirect effect, then

Nation 1 prefers a higher (resp. lower) level of adaptation capital than Firm 1.

4.4 The global case

We now consider a third variation on the model described in Section 2. Now suppose

Nation 1 can invest in Nation 2’s private and adaptation capital. By Corollary 3.2.2(C),

an increase in Nation 2’s adaptation capital hurts Firm 1 by reducing its emission, and

therefore its profit, while it hurts Consumer 1 by increasing the total emission. Therefore,

we have

Proposition 4.4.1. Neither Nation 1, nor Firm 1, will invest in Nation 2’s adaptation

capital.

The situation with respect to private capital is somewhat more complicated. Suppose

Nation 1 invests α = α∗ > 0 in Nation 2’s private capital to maximize

∫

Θ

λ2(dθ̄2) u1(θ1, e(θ̄2, θ1, θ̄2 + σ2(θ̄2) + (α, 0)))− α

α∗ is characterized by

∫

Θ

λ2(dθ̄2)
[
Def(t1, e∗1(θ̄2))Dt2e

∗
1(θ̄2)−De+δ(k1, e

∗
+(θ̄2))Dt2e

∗
+(θ̄2)

]
= 1 (4.4.2)

where e∗(θ̄2) = e(θ̄2, θ1, θ̄2 + σ2(θ̄2) + (α∗, 0)) for θ̄2 ∈ Θ. If θ̄2 is such that Dtef(t2(θ̄2 +

σ2(θ̄2)) + α∗, e∗2(θ̄2)) > 0 (resp. Dtef(t2(θ̄2 + σ2(θ̄2)) + α∗, e∗2(θ̄2)) < 0), then Corollary

3.2.2 implies Dt2e
∗
1(θ̄2) < 0 and Dt2e

∗
+(θ̄2) > 0 (resp. Dt2e

∗
1(θ̄2) > 0 and Dt2e

∗
+(θ̄2) < 0).

It follows that, if Dtef(t2(θ̄2 + σ2(θ̄2)) + α∗, e∗2(θ̄2)) > 0 for every θ̄2 ∈ supp λ2, then

Propositions 2.2.2(E) and 3.2.2 and Assumption 2.3.1(b) imply that (4.4.2) cannot hold.

Thus, we have the following results.

Proposition 4.4.3. (A) If Nation 1 believes with certainty that Nation 2’s technology

after investment will be dirty, then Nation 1 will not invest in Nation 2’s private capital.

(B) Nation 1 (resp. Firm 1) invests in Nation 2’s private capital if and only if it

believes with sufficiently high probability that Nation 2’s technology after investment will

be clean.

(C) If the belief about Nation 2’s type is such that Firm 1 will choose to invest in
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Nation 2’s private capital, then Nation 1 has an even stronger incentive to make such an

investment.

(A) follows from the fact that, given the hypothesis regarding Nation 2’s technology,

an increase in Nation 2’s private capital hurts Firm 1 by reducing its emission and hurts

Consumer 1 by raising total emission. (C) follows as Nation 1 stands to gain from the fall

in total emission in addition to the rise in Firm 1’s emission.

5. Conclusions

5.1 Summary of results

We summarize the main results obtained for the model described in Section 2.1. The

results pertaining to Stages 2 and 3 of the model are largely technical and stated carefully

in Sections 2.3 and 2.2 respectively. The substantive implication of these results is that our

model of the negotiation process is theoretically tractable and possesses very useful prop-

erties: for every profile of types, there is a unique profile of caps that is the unique, globally

asymptotically stable, stationary point of the negotiation process. The assumptions on the

primitives of the model that imply such strong properties also facilitate the comparative

statics results obtained in Section 3.1. Moreover, for every profile of types, the equilibrium

(stationary) profile of caps represents a Pareto improvement over the status quo.

We describe and interpret here in somewhat greater detail the results pertaining to

Stage 1 of the model. All nations will overinvest in domestic adaptation capital (Proposi-

tions 4.2.7). Nations with clean (resp. dirty) technologies will underinvest (resp. overin-

vest) in domestic private capital (Proposition 4.2.8). The effects of these manipulations are

to raise domestic emission, lower foreign emissions and raise the total emission. The results

regarding the domestic investment choices by firms’ are qualitatively similar (Proposition

4.3.4), but there are significant differences. For instance, the variables targeted for ma-

nipulation by a nation are the foreign caps (Remark 4.2.9), while the variable targeted by

a firm is the domestic cap (Remark 4.3.5). Nor is the extent of manipulation the same.

With respect to domestic private capital, a nation with clean (resp. dirty) technology

underinvests (resp. overinvests) less severely than its firm (Proposition 4.3.6), while the

comparison is ambiguous in the case of adaptation capital (Remark 4.3.7).

Neither nations, nor their firms, will invest in foreign adaptation capital (Proposition

4.4.1). Neither a nation with clean technology, nor its firm, will invest in the private capital

of a nation with dirty technology (Proposition 4.4.3). However, private investment across
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nations with clean technology is possible (Proposition 4.4.3) as this has the effect of raising

domestic emission while lowering foreign and total emission.

Our model yields results regarding the ordering of emission caps. Ceteris paribus,

nations with greater adaptation capital have larger caps in equilibrium (Corollary 3.2.3).

The result in terms of private capital depends on the assumption that larger private capital

implies cleaner technology. Given this assumption, ceteris paribus, the emission caps of

nations with dirty (resp. clean) technology are positively (resp. negatively) related to

the size of their private capital (Corollary 3.2.4). Obviously, care needs to be exercised

when applying this result to actual nations. Comparisons based on casual empiricism are

dubious as ceteris paribus rarely holds when comparing actual nations. However, these

results do identify the principles governing the ordering of caps.

Now alter the above scenario by making type modifications exogenous. Suppose we

identify a nation’s growth with the growth of its private capital. Also suppose that (a)

adaptation capital of both nations is fixed, (b) private capital grows in both nations for

reasons exogenous to our model, and (c) nations with clean technology (the “North”) emit

more than nations with dirty technology (the “South”). Then, Corollary 3.2.2 suggests

that Southern emission rises and Northern emission falls, i.e., their emissions converge. If

technology becomes cleaner as private capital grows, then growth will automatically make

Southern technology cleaner over time.

Our results also have some political-economic implications.

First, in our model, a nation’s equilibrium emission cap is such that it is an active

constraint on the domestic firm. Growth of a nation’s adaptation capital is a means for

relaxing this constraint. Thus, Green concern, i.e., increasing national welfare by reducing

damage to the consumer, is not the only motive for investment in domestic adaptation

capital; such investment is also a strategic way of gaining head-room for higher equilibrium

emission by the domestic firm, resulting in higher profit and national welfare. The strategic

motive is particularly strong for nations with clean technology (i.e., nations of the North)

as investment in its private capital makes an already active emission constraint still tighter;

thus, over-investment in adaptation capital is a strategic way of loosening this constraint

or counteracting the effects of private capital growth.

Secondly, the growth of Southern private capital raises total emission, while the growth

of Northern private capital lowers total emission. If a “Green” is someone who wishes to

minimize total emission, then a “Green” will favor private investment (i.e., growth) in the
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North and not in the South. This points to a conflict between the objectives of (Northern

and Southern) green lobbies and the growth ambitions of the South.

Thirdly, investment (especially in adaptation capital) is a tool for manipulation in our

model. Consequently, affluent nations with the wherewithal for substantial investments

can manipulate the emission caps in ways that poorer nations cannot do.

5.2 Variations on the theme of this paper

First, we may consider the complement of the above model with tradeable emission

permits instead of autarky. In this case, the first two stages of the model remain unchanged,

while the third stage is modelled as a competitive equilibrium. A complicating aspect of

the resulting model is that, unlike in the autarkic model, the Stage 3 emission of every

nation depends on the entire profile of types via the equilibrium price of emission rights.

An analysis of this variation remains as future work.

The second extension is to embed our model in a multi-period one. Clearly, national

types will evolve over time on account of technical change and economic growth. Moreover,

knowledge of the interaction between the economic process and the environment (modelled

by g, h and δ) will evolve over time. The only certainty in this process is that emission

rights will have to be re-allocated periodically. Therefore, learning about the relevant

random processes is important for every nation so that it can position itself better for

future renegotiations. A successful model in this context will have to feature forward-

looking behavior and sophisticated belief formation by the negotiators. Such concerns have

motivated a literature (e.g., Kelly and Kolstad 1999, Kolstad 1996, Ulph and Maddison

1997, Ulph and Ulph 1997) on learning in this context. However, a comprehensive general

model is awaited.
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Appendix

Proof of Proposition 2.2.2. (A) Fix (t, e) ∈ <+ × <̄+. As h(t, 0) = 0 ≤ e, we have

Γ(t, e) 6= ∅. As h is continuous, {v ∈ <+ | h(t, v) ≤ e} is closed in <+. As V (t) ∈ <+,

[0, V (t)] is compact. Therefore, Γ(t, e) is compact. As g is continuous, Weierstrass’ theorem

implies the existence of v ∈ Γ(t, e) such that g(t, v) = sup g(t, Γ(t, e)).

We now show that there is a unique solution. Suppose v, v′ ∈ Γ(t, e) such that

g(t, v) = g(t, v′) = sup g(t, Γ(t, e)) and v 6= v′. Let λ ∈ (0, 1). As v, v′ ∈ Γ(t, e), we have

h(t, v) ≤ e, h(t, v′) ≤ e and v, v′ ∈ [0, V (t)]. It follows that λv+(1−λ)v′ ∈ [0, V (t)], and as

h(t, .) is strictly convex, we have h(t, λv +(1−λ)v′) < λh(t, v)+ (1−λ)h(t, v′) ≤ e. Thus,

λv + (1 − λ)v′ ∈ Γ(t, e), and as g(t, .) is strictly concave, we have g(t, λv + (1 − λ)v′) >

λg(t, v) + (1− λ)g(t, v′) = sup g(t,Γ(t, e)), a contradiction.

(B) Define mappings Γ1, Γ2 and Γ, each from <+×<̄+ to <+, by Γ1(t, e) = {v ∈ <+ |
h(t, v) ≤ e}, Γ2(t, e) = [0, V (t)] and Γ(t, e) = Γ1(t, e) ∩ Γ2(t, e) respectively. Suppose Γ is

continuous and has nonempty and compact values. Using this fact, (A) and the continuity

of g, the result follows from the Theorem of the Maximum (Berge 1963, Theorem VI.3).

We now confirm the hypothesized properties of Γ.

Assumptions 2.2.1 implies that 0 ∈ Γ(t, e) for every (t, e) ∈ <+ × <̄+. Thus, Γ

has nonempty values. As h is continuous, Gr Γ1 is closed in <+ × <̄+ × <+. It follows

immediately that Γ1 has closed values. As V (t) ∈ <++, Γ2 has compact values. Thus, Γ

has compact values.

If Γ2 is upper hemicontinuous, then so is Γ (Berge 1963, Theorem VI.1.7). We show

that Γ2 is upper hemicontinuous. Consider (t, e) ∈ <+×<̄+ and ε > 0. As V is continuous,

there exists an open neighborhood of t in <+, say U , such that V (U) ⊂ [0, V (t) + ε). It

follows that [0, V (t′)] ⊂ [0, V (t)+ε) for every t′ ∈ U . Thus, Γ2(U×<̄+) = ∪t′∈U [0, V (t′)] ⊂
[0, V (t) + ε). Suppose E is open in <+ and Γ2(t, e) = [0, V (t)] ⊂ E. It follows that there

exists ε > 0 such that [0, V (t) + ε)) ⊂ E. By the above argument, there exists an open

neighborhood of t in <+, say U , such that Γ2(U × <̄+) ⊂ [0, V (t) + ε) ⊂ E, as required.

We now show that Γ is lower hemicontinuous. Consider (t, e) ∈ <+× <̄+ and E open

in <+ such that Γ(t, e) ∩ E 6= ∅.
Suppose e = 0. Then Γ(t, e) = {0} ⊂ E. As Γ is upper hemicontinuous, there exists an

open neighborhood of (t, e) in <+×<̄+, say U , such that Γ(U) ⊂ E. Thus, Γ(t′, e′)∩E 6= ∅
for every (t′, e′) ∈ U .

Suppose e > 0. Define mappings Γ̂1, Γ̂2 and Γ̂, each from <+ × <̄+ to <+, by

Γ̂1(t, e) = {v ∈ <+ | h(t, v) < e}, Γ̂2(t, e) = [0, V (t)) and Γ̂(t, e) = Γ̂1(t, e) ∩ Γ̂2(t, e)
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respectively. As Γ(t, e) ∩ E 6= ∅, there exists v ∈ E such that v ∈ [0, V (t)] and h(t, v) ≤ e.

If v = 0, then h(t, v) = 0 < e and v = 0 ∈ [0, V (t)). Thus, v ∈ Γ̂(t, e) ∩ E. If v > 0,

then ∅ 6= [0, v) ⊂ Γ̂(t, e) as h(t, .) is strictly increasing. As E is open in <+ and v ∈ E,

∅ 6= [0, v) ∩ E ⊂ Γ̂(t, e) ∩ E. We conclude that Γ̂(t, e) ∩ E 6= ∅.
If Γ̂ is lower hemicontinuous at (t, e), then there exists an open neighborhood of (t, e)

in <+ × <̄+, say U , such that ∅ 6= Γ̂(t′, e′) ∩ E ⊂ Γ(t′, e′) ∩ E for every (t′, e′) ∈ U . Thus,

Γ is lower hemicontinuous at (t, e), as required.

It remains to show that Γ̂ is lower hemicontinuous. Suppose E is open in <+. As

h and V are continuous, Gr Γ̂1 = {(t, e, v) ∈ <+ × <̄+ × <+ | h(t, v) − e < 0} and

Gr Γ̂2 = {(t, e, v) ∈ <+×<̄+×<+ | v−V (t) < 0} are open in <+×<̄+×<+. Consequently,

Gr Γ̂ = Gr Γ̂1 ∩Gr Γ̂2 is open in <+ × <̄+ ×<+. Note that

{(t, e) ∈ <+ × <̄+ | Γ̂(t, e) ∩ E 6= ∅} = π(Gr Γ̂ ∩ <+ × <̄+ × E)

where π : <+ × <̄+ × <+ → <+ × <̄+ is the projection mapping π(t, e, v) = (t, e). As

π is an open mapping and Gr Γ̂ and <+ × <̄+ × E are open in <+ × <̄+ × <+, we have

{(t, e) ∈ <+ × <̄+ | Γ̂(t, e) ∩ E 6= ∅} open in <+ × <̄+. Thus, Γ̂ is lower hemicontinuous.

(C) and (D) follow immediately from Assumption 2.2.1.

(E) Let e, e′ ∈ [0, h(t, V (t))] and e < e′. (D) implies h(t, v(t, e)) = e < e′ =

h(t, v(t, e′)). Assumption 2.2.1 implies v(t, e) < v(t, e′) ≤ V (t), and therefore, f(t, e) =

g(t, v(t, e)) < g(t, v(t, e′)) = f(t, e′).

(F) Let e, e′ ∈ [0, h(t, V (t))] and λ ∈ (0, 1), with e 6= e′. Let v(t, e) = v and v(t, e′) =

v′. By definition, h(t, v) ≤ e and h(t, v′) ≤ e′. Assumption 2.2.1 implies h(t, λv + (1 −
λ)v′) ≤ λh(t, v) + (1− λ)h(t, v′) ≤ λe + (1− λ)e′. Therefore, by Assumption 2.2.1,

f(t, λe+(1−λ)e′) ≥ g(t, λv+(1−λ)v′) > λg(t, v)+(1−λ)g(t, v′) = λf(t, e)+(1−λ)f(t, e′)

(G) Using (C), if e ≥ h(t, V (t)), then f(t, e) = g(t, v(t, e)) = g(t, V (t)).

Proof of Proposition 2.3.2. (A) follows immediately from the definition of V (t).

(B) Consider e > h(t, V (t)). By Proposition 2.2.2(C), v(t, e′) = V (t) for every e′ >

h(t, V (t)). Therefore, Dev(t, e) = 0, and using (A), Dvg(t, v(t, e)) = Dvg(t, V (t)) = 0.

(C) By Proposition 2.2.2(D), if e ∈ (0, h(t, V (t))), then h(t, v(t, e)) = e. In this case,

we can combine Assumptions 2.2.1(c) and 2.3.1(a), and use the implicit function theorem

(Lang 1993, XIV, Theorem 2.1) to conclude that v(t, .) is C1 on (0, h(t, V (t))).
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(D) Combining (B), (C) and Assumption 2.3.1(a), it follows that f(t, .) = g(t, v(t, .))

is C1 on (0, h(t, V (t))) ∪ (h(t, V (t)),∞).

Proof of Proposition 2.3.5. If ei ≥ h(ti, V (ti)), then Proposition 2.2.2(C) implies

v(ti, ei) = V (ti). It follows that Ui(θi, I, e) = Ui(θi, I, h(ti, V (ti)), e−i) is independent of

ei for ei ≥ h(ti, V (ti)).

Consider ei ∈ (0, h(ti, V (ti))). Proposition 2.2.2(D) implies that h(ti, v(ti, ei)) = ei

and Ui(θi, I, e) is given by (2.3.3). Proposition 2.3.2(C) and Assumption 2.3.1(a) yield

Dei
v(ti, ei) = 1/Dvi

h(ti, v(ti, ei)). Using Proposition 2.3.2(D), the derivative of the first

term of (2.3.3) with respect to ei is

Dvig(ti, v(ti, ei))Deiv(ti, ei) =
Dvi

g(ti, v(ti, ei))
Dvih(ti, v(ti, ei))

(A.1)

As v is continuous, limei↑h(ti,V (ti)) v(ti, ei) = v(ti, h(ti, V (ti))) = V (ti) by Proposition

2.2.2(B). Using (A.1), Assumption 2.3.1(a) and Proposition 2.3.2(A), we have

lim
ei↑h(ti,V (ti))

Dvig(ti, v(ti, ei))Deiv(ti, ei) =
Dvig(ti, V (ti))
Dvih(ti, V (ti))

= 0

The derivative of the second term of (2.3.3) with respect to ei, evaluated at h(ti, V (ti)), is

−
∫

Θn−1
Λi(I, e−i, dx)De+δ


ki, h(ti, V (ti)) +

∑

j∈N−{i}
h(tj(x), v(tj(x), ej))


 < 0

Therefore, ei = h(ti, V (ti)) cannot maximize (2.3.3). Since Nation i’s expected payoff is

invariant with respect to ei for ei ≥ h(ti, V (ti)), we must have b < h(ti, V (ti)) for every

b ∈ βi(e−i; θi, I). It follows from Proposition 2.2.2(D) that h(ti, v(ti, b)) = b for every

b ∈ βi(e−i; θi, I).

Proof of Proposition 2.3.13. Let e∗ be a stationary point of (2.3.4). Consider j ∈ N .

Using Corollary 2.3.9 and Proposition 2.3.5, we have 0 ≤ e∗j = βj(e∗−j ; θj) < h(tj , V (tj)).

(2.3.10) implies uj(θj , e
∗) ≥ uj(θj , b, e

∗
−j) for every b ∈ <̄+. Therefore, uj(θj , e

∗) ≥
uj(θj , b, e

∗
−j) for every b ∈ [0, h(tj , V (tj))]. Consequently, e∗ is a Nash equilibrium of

G(θ).

Conversely, suppose e∗ is a Nash equilibrium of G(θ). Then, for every j ∈ N ,

e∗j ∈ [0, h(tj , V (tj))] and uj(θj , e
∗) ≥ uj(θj , b, e

∗
−j) for every b ∈ [0, h(tj , V (tj))]. As

uj(θj , ., e
∗
−j) is strictly concave on [0, h(tj , V (tj))], uj(θj , e

∗) > uj(θj , b, e
∗
−j) for every

b ∈ [0, h(tj , V (tj))] − {e∗j}. (2.3.10) implies βj(e∗−j ; θj) ⊂ [0, h(tj , V (tj))]. Thus, if
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b′ ∈ <̄+ − [0, h(tj , V (tj))], then there exists b ∈ [0, h(tj , V (tj))], such that uj(θj , b, e
∗
−j) >

uj(θj , b
′, e∗−j). Consequently, uj(θj , e

∗) > uj(θj , b
′, e∗−j). Therefore, e∗j = βj(e∗−j ; θj) for

every j ∈ N . Thus, e∗ is a stationary point of (2.3.4).

Proof of Proposition 2.3.14. Consider the game G(θ). By Assumption 2.2.1(a), each

player’s strategy set is a nonempty, compact and convex subset of <. Proposition 2.2.2(B)

and Assumption 2.3.1(b) imply that each player’s payoff function is continuous. Propo-

sition 2.2.2(F) and Assumption 2.3.1(b) imply that each player’s payoff is concave in his

own strategy. Thus, by Nash’s existence theorem, G(θ) has a Nash equilibrium, which is

a stationary point of (2.3.4) by Proposition 2.3.13.

Proof of Proposition 2.3.18. Fix i ∈ N and a stationary point e of (2.3.4). Let Rj =

[ej , h(tj , V (tj))] for j ∈ N and let R =
∏

j∈N Rj . Corollary 2.3.11 ensures that IntR 6= ∅.
Given x ∈ R−{e}, define ej = (e1, . . . , ej) and xj = (xj , . . . , xn) for j = 1, . . . , n; formally

define (e0, x1) = x and (en, xn+1) = e.

Consider x ∈ R such that x 6= (h(tj , V (tj)))j∈N and x 6= e. Assumption 2.3.1(b)

implies Dek
ui(θi, x) = −De+δ(ki, x+) < 0 for every k ∈ N − {i}. Corollary 2.3.9 and

Assumption 2.3.1(b) imply that

Deiui(θi, x) = Deiui(θi, e) +
n∑

k=1

[
Deiui(θi, e

k−1, xk)−Deiui(θi, e
k, xk+1)

]

= Deiui(θi, e) +
n∑

k=1

∫ xk

ek

dy Deiek
ui(θi, e

k−1, y, xk+1)

< Deiui(θi, e)

= 0

Given z ∈ R− {e}, it follows that

ui(θi, z)− ui(θi, e) =
n∑

k=1

[
ui(θi, e

k−1, zk)− ui(θi, e
k, zk+1)

]

=
n∑

k=1

∫ zk

ek

dy Dek
ui(θi, e

k−1, y, zk+1)

< 0

as required.

Proof of Proposition 3.1.2. (A) Consider (t, e) ∈ <2
++ such that e < h(t, V (t)). It fol-

lows from Proposition 2.2.2(D) that v = v(t, e) maximizes g(t, v) subject to the constraint
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h(t, v) = e. Thus, there exists λ(t, e) ∈ < such that Dvg(t, v(t, e))+λ(t, e)Dvh(t, v(t, e)) =

0 and h(t, v(t, e))− e = 0. Assumption 3.1.1(c) implies that the mapping

(t, e, v, λ) 7→ (Dvg(t, v) + λDvh(t, v), h(t, v)− e)

is twice continuously differentiable. As Assumption 2.2.1(c) implies that the matrix
(

Dvvg(t, v(t, e)) + λ(t, e)Dvvh(t, v(t, e)) Dvh(t, v(t, e))
Dvh(t, v(t, e)) 0

)

is non-singular, the implicit function theorem (Lang 1993, XIV, Theorem 2.1) guarantees

the existence of C2 functions (t′, e′) 7→ v(t′, e′) and (t′, e′) 7→ λ(t′, e′) for some open neigh-

borhood of (t, e). It follows immediately that f is C2 on {(t, e) ∈ <2
++ | e < h(t, V (t))}.

(B) Suppose e, t, t′ ∈ <+, t < t′, e ≤ h(t, V (t)) and e ≤ h(t′, V (t′)). Proposition

2.2.2(D) and Assumption 3.1.1(a) imply h(t, v(t, e)) = e = h(t′, v(t′, e)) = h(t + t′ −
t, v(t′, e)) < h(t, v(t′, e)). Assumption 2.2.1(c) implies v(t, e) < v(t′, e) and the definition

of v implies v(t′, e) ≤ V (t′). Therefore, Assumptions 3.1.1(a) and 2.2.1(b) imply f(t, e) =

g(t, v(t, e)) < g(t′, v(t, e)) < g(t′, v(t′, e)) = f(t′, e).

(C) This follows from Proposition 3.1.2(A) and Assumption 3.1.1(c).

Proof of Proposition 3.1.5. We simplify notation via the following conventions. As θ is

given, we shall suppress it in all expressions. By convention: f(tj , .) ≡ fj and δ(kj , .) ≡ δj .

We start with two preliminary steps, (α) and (β), before proving (A) and (B).

(α) Differentiating (3.1.3) with respect to x yields the equation ADxe = b, where A

and b are the n× n and n× 1 matrices given by

A =




De1e1u1 . . . De1enu1

...
. . .

...
Dene1un . . . Denenun


 and b =




−De1xu1

0
...
0




Let Aj be the (n− 1)× (n− 1) matrix derived from A by eliminating the first row and the

j-th column. Using Cramer’s rule, we have

Dxej =
(−1)jDe1xu1 detAj

detA
(A.2)

(2.3.8) implies that, for every i ∈ N ,

Deiej ui =
{

Deieifi −De+e+δi, if j = i
−De+e+δi, if j ∈ N − {i}
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We first evaluate det Aj for j ∈ N − {1}. Subtracting the first column of Aj from

every other column yields det Aj = det Bj , where

Bj =




−De+e+δ2 De2e2f2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

−De+e+δj−1 0 . . . Dej−1ej−1fj−1 0 . . . 0
−De+e+δj 0 . . . 0 0 . . . 0
−De+e+δj+1 0 . . . 0 Dej+1ej+1fj+1 . . . 0

...
...

. . .
...

...
. . .

...
−De+e+δn 0 . . . 0 0 . . . Denen

fn




By a sequence of j − 2 adjacent column interchanges, we can transform Bj into

Cj =




De2e2f2 . . . 0 −De+e+δ2 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . Dej−1ej−1fj−1 −De+e+δj−1 0 . . . 0
0 . . . 0 −De+e+δj 0 . . . 0
0 . . . 0 −De+e+δj+1 Dej+1ej+1fj+1 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 −De+e+δn 0 . . . Denenfn




As interchanging adjacent columns changes the sign of a determinant, we have

det Aj = det Bj = (−1)j−2 det Cj = (−1)j−1 De+e+δj

De1e1f1Dejej fj

n∏

k=1

Dekek
fk

Thus,

Dxej =
[
(−1)2j−1

∏n
k=1 Dekek

fk

detA

]
De1xu1De+e+δj

De1e1f1Dejej fj
(A.3)

(β) Although the following arguments are standard, we provide them for the sake of

completeness.

By the fundamental theorem of algebra (Markushevich 1965, Theorem 17.7), A has

n roots. As A is real, its characteristic polynomial has real coefficients. Therefore, the

conjugate of every complex root of A with multiplicity m is also a root of A with multiplicity

m. Therefore, the product of all complex roots is positive. As A is similar to its Jordan

canonical form (Gantmacher 1990, Section VI.6.3), det A equals the product of its roots.

(2.3.16) implies that A is a row dominant diagonal matrix. Corollary 2.3.9 implies that A

has a negative diagonal.
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Suppose λ is a root of A with a non-negative real part. Let |c| denote the modulus

of a complex number c. As aii < 0 for every i ∈ N , |aii − λ| ≥ |aii| >
∑

j∈N−{i} |aij | for

every i ∈ N . This implies H = A − λI is an n × n complex matrix with a row dominant

diagonal. H is singular as λ is a root of A. Thus, there exists a complex n-tuple x 6= 0

such that Hx = 0, which implies hiixi +
∑

j∈N−{i} hijxj = 0 for every i ∈ N . The triangle

inequality implies

|hii||xi| = |hiixi| =
∣∣∣∣∣∣

∑

j∈N−{i}
hijxj

∣∣∣∣∣∣
≤

∑

j∈N−{i}
|hijxj | =

∑

j∈N−{i}
|hij ||xj |

Let k ∈ N be such that |xk| ≥ |xj | for every j ∈ N . It follows that |hkk||xk| ≤∑
j∈N−{k} |hkj ||xk| = |xk|

∑
j∈N−{k} |hkj |. As x 6= 0, |xk| > 0. Therefore, |hkk| ≤∑

j 6=k |hkj |, a contradiction. Thus, all the roots of A have negative real parts.

It follows that detA > 0 if and only if n is even. By copying this argument, we have

detA1 < 0 if and only if n is even.

(A) Proposition 2.2.2(F) implies Dekek
fk < 0 for every k ∈ N . This and (β) imply

(−1)2j−1
∏n

k=1 Dekek
fk

det A
< 0

for every n and j ∈ N − {1}. The result follows from (A.3) and Assumption 2.3.1(b).

(B) follows from (A.2) and (β).

(C) It follows from (A.2) that

Dx

∑

j∈N

ej =
De1xu1

detA

∑

j∈N

(−1)j detAj =
De1xu1

detA
det K

where

K =




−1 . . . −1
De2e1u2 . . . De2enu2

...
. . .

...
Dene1un . . . Denenun




Subtracting the first column of K from every other column yields det K = det L, where

L =




−1 0 . . . 0
−De+e+δ2 De2e2f2 . . . 0

...
...

. . .
...

−De+e+δn 0 . . . Denenfn



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Thus, Dx

∑
j∈N ej = De1xu1 detL/ detA = −De1xu1

∏n
k=2 Dekek

fk/ detA. Note that
∏n

k=2 Dekek
fk < 0 if and only if n is even. The result follows from (β).

Proof of Corollary 3.2.3. Let k1 > k2. Assumptions 2.3.1(b) and 3.1.1(d) imply

0 < De+δ(k1, e+(θ)) < De+δ(k2, e+(θ)). This and (3.1.3) implies
∫ e1(θ)

e2(θ)
dxDeef(t, x) =

Def(t, e1(θ))−Def(t, e2(θ)) < 0. Proposition 2.2.2(F) implies e1(θ) > e2(θ).

Proof of Corollary 3.2.4. Suppose t1 > t2, Dtef(t1, e1(θ)) > 0 and Dtef(t2, e2(θ)) > 0.

Assumption (c) implies Dtef(x, e1(θ)) > Dtef(t1, e1(θ)) > 0 for every x ∈ [t2, t1]. (3.1.3)

implies Def(t1, e1(θ)) = Def(t2, e2(θ)). Therefore,

∫ e2(θ)

e1(θ)

dy Deef(t2, y) = Def(t2, e2(θ))−Def(t2, e1(θ))

= Def(t1, e1(θ))−Def(t2, e1(θ))

=
∫ t1

t2

dx Dtef(x, e1(θ))

> 0

Proposition 2.2.2(F) implies e1(θ) > e2(θ). The other case follows analogously.
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Notes

1. Our aim is to work out the consequences of the regime modelled in this paper, not

to rationalize any actual environmental protocol. While the number of actual protocols

is very large, most are merely exhortative. Improving on this situation requires us to

understand, ex ante, the consequences of different strategies for constructing a protocol.

In this paper, we analyze one version of the quantity-rationing strategy.

2. We should warn the reader that the “national firm” is not state-controlled. It

is a standard profit-maximizing firm. A regulatory scheme determines the allocation of

emission rights implied by an emission cap. This allocation determines each firm’s con-

strained production set. By aggregating the constrained production sets, we may derive

the national firm’s emission-cap-constrained production set.

3. We identify “reached” with asymptotic convergence.

4. As a result, in parts of the literature (e.g., the cooperative game approach), the

status quo emission choices are modelled as a Nash equilibrium of a non-cooperative game

played among the nations. This is not a compelling description of the status quo as the

emission decision is made by emitters rather than by the state. It is doubtful that, in the

absence of an explicit capping protocol, domestic regulators attempt, much less succeed in,

the alignment of domestic emitters’ incentives with those of the state so as to force them

to take into account the international emission externality. At best, status quo regulation

is designed to force emitters to take into account domestic localized externalities, rather

than international ones.

5. Apart from d’Aspremont et al. (1983), this approach has a formal affinity to the

literature on stable cartels (Donsimoni et al. 1986), and an informal affinity with the

literature on coalition formation (e.g., Aumann and Dreze 1983, Bernheim et al. 1987,

Hart and Kurz 1983, Ray and Vohra 1997).

6. We are implicitly assuming in (2.3.4) that the best response mapping is single-

valued, i.e., a function. This property will be derived below in Corollary 2.3.9.

35



References

d’Aspremont, C., Jacquemin, J., Gabszewicz, J., Weymark, J., 1983. On the stability of

collusive price leadership. Canadian Journal of Economics 16, 17-25.

Aumann, R., Dreze, J., 1983. Cooperative games with coalition structures. International

Journal of Game Theory 3, 217-237.

Barrett, S., 1994. Self-enforcing international environmental agreements. Oxford

Economic Papers 46, 878-894.

Berge, C., 1963. Topological Spaces. Macmillan.

Bernheim, B., Peleg, B., Whinston, M., 1987. Coalition-proof Nash equilibria: concepts.

Journal of Economic Theory 42, 1-12.

Black, J., Levi, M., De Meza, D., 1993. Creating a good climate: minimum participation

for tackling the greenhouse effect. Economica 60, 281-294.

Breton, M., Zaccour, G., Zahaf, M., 2004. A differential game of joint implementation

of environmental projects. Mimeo.

Carraro, C., Siniscalco, D., 1993. Strategies for the international protection of the

environment. Journal of Public Economics 52, 309-328.

Cesar, H., 1994. Control and Game Models of the Greenhouse Effect. Lecture Notes in

Economics and Mathematical Systems 146, Springer-Verlag.

Chander, P., Tulkens, H., 1992. Theoretical foundations of negotiations and cost sharing

in transfrontier pollution problems. European Economic Review 36, 288-299.

Chander, P., Tulkens, H., 1995. A core-theoretic solution for the design of cooperative

agreements on transfrontier pollution. International Tax and Public Finance 2,

279-294.

Chander, P., Tulkens, H., 1997. The core of an economy with multilateral environmental

externalities. International Journal of Game Theory 26, 379-401.

Dockner, E., van Long, N., 1993. International pollution control: cooperative versus

non-cooperative strategies. Journal of Environmental Economics and Management

25, 13-29.

Donsimoni, M.-P., Economides, N., Polemarchakis, H., 1986. Stable cartels.

International Economic Review 27, 317-327.

Gantmacher, F., 1990. The Theory of Matrices, Vol. I. Chelsea Publishing Co.

Hart, S., Kurz, M., 1983. Endogenous formation of coalitions. Econometrica 51,

1047-1064.

36



Hoel, M., 1993. Intertemporal properties of an international carbon tax. Resource and

Energy Economics 15, 51-70.

Kaitala, V., Pohjola, M., Tahvonen, O., 1993. A Finnish-Soviet acid rain game:

non-cooperative equilibria, cost efficiency, and sulfur agreements. Journal of

Environmental Economics and Management 24, 87-100.

Kelly, D., Kolstad, C., 1999. Bayesian learning, growth and pollution. Journal of

Economic Dynamics and Control 23, 491-518.

Kolstad, C., 1996. Fundamental irreversibilities in stock externalities. Journal of Public

Economics 60, 221-233.

Lang, S., 1993. Real and Functional Analysis, 3rd ed. Springer-Verlag.

Markushevich, A., 1965. Theory of Functions of a Complex Variable, Vol. I. Prentice-Hall.

Martin, W., Patrick, R., Tolwinski, B., 1993. A dynamic game of a trans-boundary

externality with asymmetric players. Journal of Environmental Economics and

Management 25, 1-12.

Moulin, H., 1986. Game Theory for the Social Sciences. New York University Press.

Petrosjan, L., Zaccour, G., 2003. Time-consistent Shapley value allocation of pollution

cost reduction. Journal of Economic Dynamics and Control 27, 381-398.

Ray, D., Vohra, R., 1997. Equilibrium binding agreements. Journal of Economic Theory

73, 30-78.

Tulkens, H., 1998. Cooperation versus free-riding in international environmental affairs:

two approaches. In: Hanley, N., Folmer, H. (Eds.). Game Theory and the

Environment. Edward Elgar.

Ulph, A., Maddison, D., 1997. Uncertainty, learning and international environmental

policy coordination. Environmental and Resource Economics 9, 451-466.

Ulph, A., Ulph, D., 1997. Global warming, irreversibility and learning. The Economic

Journal 107, 636-650.

Van der Ploeg, F., de Zeeuw, A., 1992. International aspects of pollution control.

Environmental and Resource Economics 3, 117-139.

37


	cover.pdf
	A NON-COOPERATIVE THEORY OF QUANTITY-RATIONING INTERNATIONAL TRANSFRONTIER POLLUTION
	
	
	
	
	University of Delhi

	Working Paper No. 143


	Centre for Development Economics
	
	
	Department of Economics, Delhi School of Economics

	Centre for Development Economics
	Department of Economics, Delhi School of Economics
	Delhi 110 007 INDIA





	Tel.: 27667005/146, 27666703-705, 27666533-535

	cover.pdf
	A NON-COOPERATIVE THEORY OF QUANTITY-RATIONING INTERNATIONAL TRANSFRONTIER POLLUTION
	
	
	
	
	University of Delhi

	Working Paper No. 143


	Centre for Development Economics
	
	
	Department of Economics, Delhi School of Economics

	Centre for Development Economics
	Department of Economics, Delhi School of Economics
	Delhi 110 007 INDIA





	Tel.: 27667005/146, 27666703-705, 27666533-535


