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interact in an environment with the following features: (a) Nature im-

perfectly informs the principal via a state-contingent signal, but not

the agents, about the state of the world, (b) the principal selectively

shares this information with the agents, thereby endogenously endow-

ing them with private information that is coarser than his own, (c) the

principal assigns action spaces to the agents, and (d) an agent’s control

over the choice from his assigned action space is inalienable. Designing

an organization involves specifying (c) and specifying an information

dissemination system for implementing (b). Searching for an optimal

design involves (1) deriving optimal performance from each design, and

(2) comparing designs on the basis of their best performances. Our ex-

istence results show the feasibility of performing Step (1) in a large class

of cases.
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1. Introduction

1.1 Motivation

The formal study of organizations involves two significant classes of complications:

(a) structural complexity, and (b) complexities stemming from asymmetries of information

and incentives. (a) refers to the myriad ways of assigning rights and responsibilities, and

structuring relationships of power and authority, among the members of the organization,

e.g., a given member might serve as a common principal (resp. agent) for various agents

(resp. principals) or may perform multiple roles by acting as a principal in one relationship

and an agent in another. (b) refers to the problems of inducing members to make decisions

in the organization’s interest when they possess private information or their decisions

cannot be monitored effectively and contracted upon. Depending on the context, these

complications may be treated as descriptors of the environment, i.e., as primitives of a

model, or as aspects of the organization design chosen in response to the environment, i.e.,

as constructions chosen by a rational decision-maker. An objective of the economic theory

of organizations1 is to solve the design problem: given an environment, a class of feasible

designs, and an evaluation criterion, find an optimal organization design.2

In order to solve the design problem for a given environment, the first step is to use

the given criterion to evaluate the feasible organization designs in terms of the outcomes

that follow from them. In this paper, we model this problem and show that it can be solved

in the following framework. The environment that we consider has the following salient

features: (a) Nature initially endows only one member of the organization with private

information, and (b) the informed member is the sole principal and the other members

are his agents. Feature (b) will be formally represented by identifying the organization’s

evaluation criterion with the principal’s payoff function. The class of organization designs

considered in response to this environment is restricted by the following features: (a) the

division of labor in the organization is such that the principal designs the organization and

coordinates activities, while the agents are delegated the various tasks that constitute the

organization’s activities and determine the payoff-relevant outcomes, and (b) the principal

uses two channels to communicate with the agents, one private and the other public.

With respect to (a), an agent’s performance of assigned tasks is to be guided solely by

his incentives. With respect to (b), the private channel is used to share, privately and

selectively, portions of the principal’s information with the agents, thereby endowing them
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with private information that is coarser than the principal’s. The public channel is used

to publicly recommend action choices to the agents.

Thus, we consider organizations that operate sequentially as follows: (1) Nature in-

forms the principal, but not the agents, about the state of the world, (2) the principal

selectively and privately shares this information with the agents, and (3) an agent chooses

an action after hearing the publicly issued action recommendation by the principal. Every

member’s payoff will depend on the state and the profile of actions chosen by the agents.

When deciding whether to obey the principal, an agent’s belief regarding the state will

be conditioned on the private signal received in Step (2) and the public recommendation

received in Step (3). Our notion of equilibrium will require the principal to issue recom-

mendations that every agent will choose to obey, assuming that the other agents will do

so too.

The principal’s role in the postulated organization is twofold: (α) to design the organi-

zation, and (β) to use this design and his information to guide the agents’ decision-making.

Role (α) is performed before seeing Nature’s state-contingent signal, i.e., prior to Step (1)

in the scheme described above. It involves specifying the agents’ action spaces and the or-

ganization’s communication system. Role (β) involves recommending actions to the agents

in the context of the chosen organization design. The action spaces serve as the language

in which the principal issues recommendations to the agents and as the sets from which

the agents choose their responses in Step (3). The organization’s communication system

determines the extent of information sharing by the principal in Step (2). The action

recommendations in Step (3) are an indirect source of information for the agents as they

may reveal information about the state in addition to what is shared directly with them

in Step (2).

An agent’s role in the organization is to choose an action from the action space as-

signed to him by the design after receiving his share of the principal’s information and

the principal’s action recommendation. The principal uses his privileged position in the

organization to manipulate the agents’ incentives, via the design and the recommended

actions, in order to induce action choices that are optimal from his point of view subject

to the constraint that the action chosen by each agent must be incentive compatible for

him given the constraints imposed by the organization design.

The objective of this paper is to model Role (β) and show that the principal can

perform this role optimally. More precisely, given an organization design, we show the ex-

istence of a mapping that generates state-contingent action recommendations to the agents
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with the following properties. First, it respects the principal’s information constraint via

an appropriate measurability requirement. Secondly, it induces obedience by all the agents

in every state. Thirdly, among all mappings possessing the above two properties, the given

mapping is optimal from the principal’s point of view. This exercise enables the principal

to evaluate a particular organization design prior to receiving his private information, thus

defining a value function over the set of organization designs. We show that this ex ante

evaluation program can be carried out in two distinct environments; see the hypotheses of

Theorems 2.4.4 and 2.4.5.

Given the value function generated by a solution of Role (β), the choice of a design in

Role (α) is now a matter of maximizing the derived value function over the set of feasible

designs. In order to get quickly to the formal results, we relegate our observations regarding

Role (α) to Section 3. However, a reader wishing to contextualize the above discussion

of organizations may make a detour to Section 3.2 where we describe the problem of

“designing a firm” as an example of the general problem of designing an organization.

1.2 The literature

The organization described above resonates with the notions of teams described in [20]

and syndicates described in [31]; in particular, it has a number of congruencies with the

generalized team described in Part Two of [20]. For instance, unlike a classical team, but

like a generalized team, our organization will allow for heterogeneous preferences. Apart

from these seminal sources, our work is related to the vast literature on principal-agent

problems with a single principal.

The literature on organizations has considered various selections from the above-

mentioned complexities to describe the “environment” and a variety of classes of orga-

nization “designs”. With respect to structural complexity, while multiple role-playing is

not modelled generally and models with a single agent facing multiple principals are of

relatively recent vintage (e.g., [5] and [9]), the bulk of the literature concerns simple or-

ganizations consisting of a single principal facing one or more agents. With respect to

complications arising from informational asymmetries, while some models endow the prin-

cipal with private information (e.g., [21], [22] and [25]), most models allow only the agents

to have private information.

We start with the principal-agent literature that does not allow the principal to have

private information. The models in this literature feature a selection from the following
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sequence of events: (a) Nature privately conveys to each agent his type, (b) agents pri-

vately report their types, possibly falsely, to the principal, (c) the principal sends privacy-

preserving action recommendations to the agents based on the received type reports, and

(d) each agent chooses an action based on his type and the action recommendation received

from the principal. Note that (b) and (c) feature communication that is modelled using the

“direct” message spaces. The principal’s problem is to choose privacy-preserving action

recommendations, conditional on the type-reports, that maximize his expected payoff.

This problem is simplified further by restricting the principal’s attention to reports-to-

recommendations mappings that, in a non-cooperative fashion, induce truthful reporting

of types and obedient choice of actions by the agents.3

This class of models can be further divided into three sub-classes. First, there are the

pure “hidden characteristic” models, i.e., models that suppress steps (c) and (d) of the

general model described above and replace them with an outcome function that directly

maps agents’ type reports to outcomes; we refer the reader to Chapter 7 of [13] for an

introduction to this voluminous literature. In effect, each agent has finer exogenously

specified information than the principal and an agent’s control over his action choice (if

any) is alienated. Secondly, there are the pure “hidden action” models, i.e., models that

suppress steps (a) and (b) of the general model described above; examples include [14], [16],

[19], [23] and [29]. In effect, neither the principal nor the agents have exogenously specified

private information. Thirdly, there are models that allow agents to have exogenously

specified private information and retain control over their actions; for instance, see [18].

The model we study differs from this entire literature in two essential and obvious

ways. First, in our model, the principal has private information that he distributes among

the agents. Therefore, each agent’s information regarding the state is coarser than that

of the principal, rather than the other way around. Secondly, in our model, the principal

communicates publicly with the agents rather than privately. Moreover, our model departs

from the pure hidden characteristic models in that it does not alienate an agent’s control

over his action choice. It also departs from the pure hidden action models in that it features

informational asymmetries in addition to those related to the observability of endogenously

generated action choices by the agents.

We now turn to the second strand of the literature on principal-agent models, i.e.,

models in which the principal has private information, as in our model. This literature

includes [25] in a largely cooperative game setting and [21] and [22] in the non-cooperative

game setting. The motivation for this literature can be illustrated by the dilemma faced by
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the seller of a used car (the principal) after learning the quality of the car (the principal’s

private information): if it is common knowledge that he may offer a warranty to the buyer,

then his (non-)offer of a warranty itself conveys information to a potential buyer regarding

the quality of the car. More generally, the contract offered by an informed principal may

leak his private information. The papers cited above study the resulting problem: what is

the optimal way for the principal to structure the contract when the contract may reveal

some of his private information? As the common values version of the problem studied in

[22] has more in common with our setting, all further discussion will cite only this paper

as Maskin-Tirole.

The Maskin-Tirole model is as follows. Consider a principal contracting with a single

agent. The principal has private information while the agent does not. The model has

three stages after the principal learns his type. First, the principal offers a contract to the

agent. Next, the agent either rejects that contract, thereby ending the game, or accepts

it, thereby sending the play of the game to the third stage; this is the only decision made

by the agent in this model. If the offered contract is accepted in the second stage, then it

is implemented in the third stage. A contract maps the principal’s type to the outcome

space.4 The principal’s ability to offer any such mapping as a contract reflects the fact

that the agent does not control any outcome-relevant action choice when the contract is

implemented; otherwise, the class of contracts from which the principal makes a choice

would be limited to those that induce appropriate action choices by the agent.

The model studied in this paper may be seen as an enrichment of the third stage of

the Maskin-Tirole model in the following dimensions. First, we introduce action choice

by the agent as an ingredient of the implementation stage. The implied moral hazard

problem restricts the set of implementable contracts that the principal can offer in the

first stage of the Maskin-Tirole model. This restriction is in the nature of a refinement

and the implications of this refinement for the full three-stage Maskin-Tirole results are

unclear. Secondly, we allow multiple agents in our model. This is a non-trivial complica-

tion as these agents have heterogeneous preferences and information, and control action

choices. Thirdly, we allow direct information revelation by the principal instead of the

indirect way postulated in the Maskin-Tirole model. As the principal controls the process

of information revelation, the agents are endowed with private information, albeit coarser

than the principal’s information.

Returning to the example of the car salesman, the seller may reveal information to

potential buyers not just indirectly via the (non-)offer of a warranty, but also directly, say
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via the selective sharing of maintenance records or technical information certified by an

“honest broker”. More generally, we have the question that characterizes the principal’s

Role (α): how should the principal use his ability to structure the information dissemi-

nation and action allocation in an organization? Obviously, the same question arises in

signalling models (e.g., [7]), especially if there are multiple signal receivers.

1.3 The model

We begin the modelling of the principal’s problem with respect to Role (β) by describ-

ing the data that is exogenously given. (Ω,F) is a measurable state space. (T, T ) is the

measurable space of signals received by the principal from Nature. P ∈ ∆(Ω) is the princi-

pal’s prior belief about the state; henceforth, ∆(Y ) will denote the set of probability mea-

sures on a measurable set Y . The principal’s information about the state is derived from

the signal generated by the surjective measurable function s : Ω → T . Λ : T × F → [0, 1]

is the transition kernel generating the principal’s belief about the state conditional on the

signal received from Nature. Interpreting Λ as a regular conditional distribution on (Ω,F)

imposes the following restrictions on it: (a) for every t ∈ T , Λ(t, .) ∈ ∆(Ω), (b) for every

E ∈ F , Λ(., E) is measurable, (c) P (.) =
∫

T
P ◦ s−1(dt)Λ(t, .), and (d) Λ(t, s−1({t})) = 1

for P ◦ s−1 almost every t ∈ T .5 (O,O) is the measurable outcome space. w : O → < is

the principal’s von Neumann-Morgenstern utility, representing his preference º defined on

∆(O). I is the set of agents. vi : O → < is agent i’s von Neumann-Morgenstern utility

function, representing agent i’s preference ºi on ∆(O).

Now consider an organization design d = {((Ti, Ti), si, (Ai,Ai)), σ | i ∈ I}; the prob-

lem of choosing an optimal design d defines the principal’s Role (α), which we consider in

Section 3. (Ti, Ti) is the measurable space of signals received by agent i from the princi-

pal. si : T → Ti is the surjective measurable mapping that generates agent i’s signal as

a function of the principal’s information. The collection {(Ti, Ti), si | i ∈ I} is the prin-

cipal’s information dissemination system. (Ai,Ai) is agent i’s measurable action space.

A =
∏

i∈I Ai is the set of action profiles and σ : Ω × A → O is the measurable outcome

function. Combining design d with the exogenously given data, we have the data

Γ = {(Ω,F), (T, T ), (P, s, Λ), (O,O), w, I, (vi, (Ti, Ti), si, (Ai,Ai))i∈I , σ, λ} (1.3.1)

where λ ∈ ∆(Ω × A) is the agents’ common prior belief about the state and the action

profile to be recommended by the principal.
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Agent i’s information is generated by the mapping Fi : Ω × A → Ti × A, where

Fi(ω, a) = (si ◦s(ω), a). Fi has distribution λ◦F−1
i on Ti×A. Let Λi : Ti×A×F → [0, 1]

generate agent i’s posterior belief about the state conditional on receiving the message

generated by Fi. This requires that (a) Λi(ti, a, .) ∈ ∆(Ω) for every (ti, a) ∈ Ti × A,

(b) Λi(., ., E) is measurable for every E ∈ F , and (c) λ(. × A) =
∫

Ti×A
λ ◦ F−1

i (dti ×
da)Λi(ti, a, .). Of the message Fi(ω, a) received by agent i, the first component si ◦ s(ω)

is private, while the second component a is public, with the interpretation that ai is the

action choice being recommended to agent i. Define ui : T ×A2 → < by

ui(t, a, b) =
∫

Ω

Λi(si(t), a, dω)vi ◦ σ(ω, b) (1.3.2)

ui(t, a, b) is agent i’s expected utility if the principal receives the signal t ∈ T (whereupon

agent i receives the private signal si(t)), publicly recommends the action profile a ∈ A and

the chosen action profile is b ∈ A. Note that agent i’s expected utility does not depend

directly on t, but only indirectly via agent i’s signal si(t).

Define Bi : T × A ⇒ Ai by Bi(t, a) = ∩c∈Ai{b ∈ Ai | ui(t, a, a−i, b) ≥ ui(t, a, a−i, c)},
which is the set of optimal action choices by agent i if the principal receives signal t,

recommends the action profile a ∈ A, and the other agents choose actions as per the

principal’s recommendation. Define B : T ×A ⇒ A by B(t, a) =
∏

i∈I Bi(t, a). Also define

W : T ×A → < by

W (t, a) =
∫

Ω

Λ(t, dω)w ◦ σ(ω, a) (1.3.3)

which is the principal’s expected utility conditional on receiving signal t ∈ T from Nature

and action profile a ∈ A being implemented by the agents.

Definition 1.3.4. (A) a : T → A is an equilibrium coordination plan (ECP) for Γ if

(a) a is measurable, and

(b) a(t) ∈ B(t, a(t)) for every t ∈ T .

Let E be the set of ECPs for Γ.

(B) An ex ante optimal ECP for Γ is a ∈ E such that
∫
Ω

P (dω)w ◦ σ(ω, a ◦ s(ω)) ≥∫
Ω

P (dω)w ◦ σ(ω, b ◦ s(ω)) for every b ∈ E .

(C) An ex post optimal ECP for Γ is a ∈ E such that W (t, a(t)) ≥ W (t, b(t)) for every

t ∈ T and every b ∈ E .

In the definition of an ECP, (a) ensures that the coordination plan respects the prin-

cipal’s information constraint, while (b) ensures that, for every signal t received by the
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principal, his action recommendations a(t) induce obedience by all the agents. An ex ante

optimal ECP yields the principal the highest expected payoff among all ECPs before re-

ceiving Nature’s signal. However, there is no guarantee that the principal would choose

to implement an ex ante optimal ECP after receiving Nature’s signal; an ex post optimal

ECP guarantees this. The following result provides the natural link between ex ante and

ex post optimal ECPs.

Lemma 1.3.5. Consider Γ. If w ◦ σ is integrable and a ∈ E is an ex post optimal ECP,

then a is an ex ante optimal ECP.

Given this fact, we will search for ex post optimal ECPs and henceforth drop the

qualifier “ex post”. Our method of showing the existence of an optimal ECP is as follows.

First, we characterize an ECP as a measurable selection from an appropriate equilibrium

mapping from T to A (Lemmas 2.3.1, 2.3.2 and 2.3.4). Next, we compose the equilibrium

mapping with W to derive a mapping from T to <; for each t ∈ T , this mapping yields

the set of payoffs for the principal resulting from the set of ECPs. Finally, an implicit

measurable selection theorem is used to extract an ECP from the equilibrium mapping

that, for every t ∈ T , yields the highest possible payoff to the principal among all the

ECPs.

Some interpretative remarks regarding Γ are appropriate at this stage.

First, assuming a common belief λ across agents is a matter of convenience and is

not required for our results. Moreover, although we have taken λ as primitive data in

the interest of descriptive economy, it may itself be derived from other specifications of

primitive data. For instance, suppose M is a set of mappings a : T → A that may generate

the principal’s action recommendations contingent on his information. Let Q ∈ ∆(Ω×M)

be the agents’ belief regarding the state and the mapping to be used by the principal to

generate recommendations. Define ξ : Ω ×M → Ω × A by ξ(ω, a) = (ω, a ◦ s(ω)). Given

this formalism, we may set λ = Q ◦ ξ−1. In particular, if the agents share the principal’s

belief P regarding the state and believe that the mapping a ∈ M is used to generate the

action recommendations, then Q = P × δa and λ = (P × δa) ◦ ξ−1.

Secondly, while the principal needs to know all the data in Γ in order to formulate

his decision problem and find an optimal ECP, the agents do not necessarily need to know

all of Γ in order to formulate their decision problems as per our equilibrium concept. For

instance, the agents do not need to know w and (P, Λ). Moreover, agent i need not know

(vj , (Tj , Tj), sj) for j ∈ I − {i}.
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Thirdly, while the definition of an ECP does not explicitly feature participation con-

straints for the agents, the provision of appropriate action spaces and outcome functions

implicitly allows such constraints to be incorporated. For instance, an agent’s “partici-

pation decision” can be captured implicitly in our framework by allowing him an action

corresponding to “zero effort” and rigging the outcome function so that the resulting out-

come is no worse than an agent’s “reservation outcome”. Naturally, such requirements will

place restrictions on the class of feasible organization designs.

1.4 An application

Consider a firm with a single owner and a set of workers I. Let O = O0 ×
∏

i∈I Oi

be the outcome space, with Oi as worker i’s private outcome space (e.g., the space of

i’s wages) and O0 as the supplementary outcome space (e.g., the space of the owner’s

revenues). Worker i’s utility is generated by v∗i : Oi → <, i.e., vi = v∗i ◦ πi, where πi

projects O on Oi. The other aspects of the environment are as described in Section 1.3.

We may interpret a state ω ∈ Ω as representing technology and s(ω) ∈ T as the owner’s

information regarding the state.

The firm’s design is described as follows. The action spaces {Ai | i ∈ I} and the

mappings si are as described in Section 1.3. We set Ti ⊂ OA
i , i.e., the information shared

by worker i with the owner is a mapping ti : A → Oi, which we interpret to be a contract

that generates worker i’s private outcome as a function of the action profile; worker i’s

wage may depend not only on his own effort but also on i’s effort relative to the efforts

of other workers, as in a tournament set-up studied in [19]. So, if the state is ω, then the

owner will receive signal s(ω) and award contract si ◦ s(ω) to worker i. Finally, define the

outcome function σ : Ω×A → O by

σ(ω, a) = σ0(ω, a)× (si ◦ s(ω)(a))i∈I

Using the above definitions of v∗i and σ and the regularity of Λi, if t is the signal received

by the owner, a is the profile of actions recommended by the owner and b is the profile of

implemented actions, then worker i’s payoff specializes from (1.3.2) to

ui(t, a, b) =
∫

Ω

Λi(si(t), a, dω)v∗i ◦ πi ◦ σ(ω, b)

=
∫

Ω

Λi(si(t), a, dω)v∗i ◦ si ◦ s(ω)(b)

= v∗i ◦ si(t)(b)

(1.4.1)
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The nature of preferences and the outcome function imply that the only aspect of state

ω that is relevant to worker i is the contract si ◦ s(ω) awarded to him. Consequently, the

regularity of Λi implies that si◦s(ω) = si(t) almost surely, which enables the simplification

evident in (1.4.1). In the general model, the privateness of each agent’s signal is a means

for manipulating agents’ incentives via their posterior beliefs regarding the state. As is

clear from (1.4.1), the privateness of signal si(t) is irrelevant in this application. Given

this set-up and design, does the owner have an optimal ECP? We show in Section 2.5

that the nature of si(t) is crucial for guaranteeing an affirmative answer as it directly and

exclusively determines the dependence of i’s private outcome and payoff on the profile of

actions. More precisely, we provide two classes of contracts that allow the existence of an

optimal ECP.

To summarize, the application involves the specialization of some of the data describ-

ing Γ, namely, the outcome space O, the agents’ payoff functions vi, the agents’ signal

spaces Ti and the outcome function σ. This specialized version of Γ will be denoted by

Γ∗. In Section 2.5, we provide assumptions regarding Γ∗ that enable the application of the

general results regarding Γ.

1.5 Plan of paper

The remainder of the paper is organized as follows. Section 2 is devoted to the

statements and proofs of various results concerning the existence of optimal ECPs. In

Section 2.1, we state various mathematical conventions that we employ in this paper.

Section 2.2 is devoted to deriving the properties of the expected utility functions ui and

W , defined by (1.3.2) and (1.3.3) respectively, under a variety of assumptions regarding

the primitive data Γ. Although these properties play a vital role in the existence results

related to ECPs (resp. optimal ECPs) of Section 2.3 (resp. Section 2.4), they may be taken

as given if the reader wishes to pass directly to Section 2.3. In Section 2.5, we apply the

results of Sections 2.3 and 2.4 to the application described in Section 1.4. We consider the

problem of choosing an optimal organization design in Section 3 and conclude in Section

4. The proofs are relegated to the two appendices.

2. Solutions of existence problem

2.1 Conventions

We shall use the following conventions without specific comment: (1) a measurable

space refers to a pair (X,X ), where X is a set and X is a σ-algebra on X; (2) subsets
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of measurable (resp. topological) spaces are given the trace σ-algebra (resp. subspace

topology); (3) products of measurable (resp. topological) spaces are given the product

σ-algebra (resp. topology); (4) if X is a topological space, then it is given the Borel

σ-algebra, denoted by B(X); (5) the set of real numbers, <, is given the Euclidean metric

topology; (6) if X and Y are topological spaces, then the space of continuous functions

f : X → Y is denoted by Y X ; (7) if X is topological, then the space of bounded elements of

<X is denoted by C(X); (8) if (X,X ) and (Y,Y) are measurable spaces, then the product

measurable space is denoted by (X × Y,X ×Y). Lemma B.1 implies that conventions (2)

and (4) are consistent. Lemma B.2 implies that conventions (3) and (4) are consistent for

a wide class of situations relevant to this paper. Given a measurable space (X,X ) and

topological spaces Y and Z, a function f : X×Y → Z is said to be Caratheodory if f(., y)

is measurable for every y ∈ Y and f(x, .) is continuous for every x ∈ X; by convention,

whenever we describe a function as being “Caratheodory”, we mean that it is measurable

in the first argument and continuous in the second argument. We shall abbreviate “locally

convex topological vector space” to l.c.s.

F : X ⇒ Y denotes a set-valued mapping with domain X and values in 2Y . Given

topological spaces X and Y , F is said to be upper (resp. lower) hemicontinuous if F+(E) =

{x ∈ X | F (x) ⊂ E} (resp. F−(E) = {x ∈ X | F (x) ∩ E 6= ∅}) is open in X for every E

open in Y . If (X,X ) is a measurable space and Y is a topological space, then F is said to

be measurable (resp. weakly measurable) if F−(E) ∈ X for every E closed (resp. open) in

Y . We note some well-known facts that we shall use repeatedly without explicit reference.

Remark 2.1.1. A compact metric space is second countable ([10], Theorem XI.4.1), sep-

arable ([10], Theorem VIII.7.3) and complete ([10], Corollary XIV.2.4); consequently, it is

a Polish space, and therefore a Souslin space (see [15]). Given convention (2), a product

of compact spaces is compact ([10], Theorem XI.1.4); a countable product of metrizable

spaces is metrizable ([10], Corollary IX.7.3).

2.2 Properties of the expected utility function

In this section we establish conditions on Γ that ensure ui and W are either continuous

or Caratheodory. We prove the results related to ui but omit the proofs of results related

to W as they are analogous.

The properties of ui, defined by (1.3.2), are ingredients in the existence theorems

proved in Sections 2.3 and 2.4. Lemma 2.2.1 specifies assumptions on Γ guaranteeing that
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ui is continuous. Lemmas 2.2.2 and 2.2.3, and Corollary 2.2.4, provide conditions guaran-

teeing that ui is Caratheodory, i.e., ui(., a, b) is measurable and ui(t, ., .) is continuous.

The common features of all three lemmas are: A and O are topological spaces and

vi is continuous. The state space Ω is given topological structure in Lemmas 2.2.1 and

2.2.2, so that F = B(Ω), but not in Lemma 2.2.3. The outcome function σ is assumed

to be continuous in Lemmas 2.2.1 and 2.2.2, but this requirement is weakened in Lemma

2.2.3. Finally, for E ∈ F , while Λi(., ., E) is assumed to be continuous in Lemma 2.2.1, it

is required to be only a Caratheodory mapping in Lemmas 2.2.2 and 2.2.3.

Lemma 2.2.1. Consider Γ and i ∈ I. If

(a) Ω is compact metric; A, O, T and Ti are topological,

(b) σ, vi and si are continuous, and

(c) Λi : Ti×A×B(Ω) → [0, 1] is such that Λi(ti, a, .) ∈ ∆(Ω) for every (ti, a) ∈ Ti×A

and Λi(., ., E) is continuous for every E ∈ B(Ω),

then ui is continuous.

The next two results provide conditions that ensure ui is a Caratheodory mapping,

as required in Theorem 2.3.5.

Lemma 2.2.2. Consider Γ and i ∈ I. If

(a) Ω is compact metric; A and O are topological,

(b) σ and vi are continuous, and

(c) Λi : Ti×A×B(Ω) → [0, 1] is such that Λi(ti, a, .) ∈ ∆(Ω) for every (ti, a) ∈ Ti×A

and Λi(., ., E) is Caratheodory for every E ∈ B(Ω),

then ui is Caratheodory.

The next result weakens the continuity assumption on σ to a property intermedi-

ate between continuity and the Caratheodory property. Denote by B(Ω,F) the space of

functions that are uniform limits of finite linear combinations of functions drawn from

{1E | E ∈ F}; equip B(Ω,F) with the supremum norm.

Lemma 2.2.3. Consider Γ and i ∈ I. If

(a) A and O are topological,

(b) σ is Caratheodory and vi is continuous,

(c) a 7→ vi ◦ σ(., a) is a continuous mapping from A to B(Ω,F), and

(d) Λi : Ti × A × F → [0, 1] is such that Λi(ti, a, .) ∈ ∆(Ω) for every (ti, a) ∈ Ti × A
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and Λi(., ., E) is Caratheodory for every E ∈ F ,

then ui is Caratheodory.

Corollary 2.2.4. Given (a) and (d), if Ω and A are compact, and (b) is replaced by

(b′) σ and vi are continuous,

then ui is Caratheodory.

The properties of W , defined by (1.3.3), are ingredients in the existence theorems

proved in Section 2.4. Lemma 2.2.5 specifies assumptions on Γ guaranteeing that W is

continuous. It is proved by mimicking the proof of Lemma 2.2.1.

Lemma 2.2.5. Consider Γ. If

(a) Ω is compact metric; A, O and T are topological,

(b) σ and w are continuous, and

(c) Λ : T × B(Ω) → [0, 1] is such that Λ(t, .) ∈ ∆(Ω) for every t ∈ T and Λ(., E) is

continuous for every E ∈ B(Ω),

then W is continuous.

Lemmas 2.2.6 provides conditions guaranteeing that W is Caratheodory. It is proved

by mimicking the proof of Lemma 2.2.3.

Lemma 2.2.6. Consider Γ. If

(a) A and O are topological,

(b) σ is Caratheodory and w is continuous, and

(c) Λ : T × F → [0, 1] is such that Λ(t, .) ∈ ∆(Ω) for every t ∈ T and Λ(., E) is

measurable for every E ∈ F ,

then W is Caratheodory.

2.3 Existence of equilibrium coordination plans

In this section we provide sufficient conditions for the existence of an ECP for Γ. The

following lemma is the key to Theorems 2.3.3 and 2.4.4, which are existence results for

ECPs and optimal ECPs respectively.

Lemma 2.3.1. Given Γ, if

(a) I is countable,

(b) T is a compact Hausdorff space, and

for every i ∈ I,
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(c) Ai is a convex, compact and metrizable subset of an l.c.s. Li, and

(d) ui is continuous and ui(t, a, b−i, .) : Ai → < is quasi-concave for every (t, a, b−i) ∈
T ×A×A−i,

then

(A) B is upper hemicontinuous, with nonempty, convex and compact values.

Define Ξ : T ⇒ A by Ξ(t) = {a ∈ A | a ∈ B(t, a)}. Then,

(B) Ξ has nonempty compact values and GrΞ is closed in T ×A,

(C) Ξ is (weakly) measurable, and

(D) a : T → A is an ECP for Γ iff. a is a measurable selection from Ξ.

The following lemma is a slight variation on Lemma 2.3.1.

Lemma 2.3.2. Given Γ, if Assumptions (a), (c) and (d) of Lemma 2.3.1 are satisfied and

(b′) T is a separable metric space and (T,B(T )) is a complete measurable space,

then the conclusions of Lemma 2.3.1 hold.

Using the above results, we have an existence theorem for ECPs that exploits the

topological structure of T and the continuity of each expected utility function ui. See

Lemma 2.2.1 for conditions on Γ that ensure the continuity of ui.

Theorem 2.3.3. If Γ satisfies the assumptions of Lemma 2.3.1 (resp. 2.3.2), then there

exists an ECP for Γ.

The second existence result dispenses with the topological structure of T and the

continuity of the expected utility functions, with the former replaced by measure-theoretic

requirements and the latter replaced by the requirement of a Caratheodory expected utility

function. We prepare for this result by proving the following lemma, which is the key

to Theorems 2.3.5 and 2.4.5, which are existence results for ECPs and optimal ECPs

respectively.

Lemma 2.3.4. Given Γ, if

(a) I is countable,

(b) (T, T ) is a complete measurable space, and

for every i ∈ I,

(c) Ai is a convex compact subset of a separable Banach space Li with IntAi 6= ∅,6
and

(d) ui : T × A2 → < is Caratheodory and ui(t, a, b−i, .) : Ai → < is quasi-concave for

every (t, a, b−i) ∈ T ×A×A−i,
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then there exists a mapping φ : T ×A ⇒ A such that

(A) φ has nonempty, compact and convex values,

(B) φ is weakly measurable,

(C) φ(t, .) is upper hemicontinuous for every t ∈ T , and

(D) a : T → A is an ECP for Γ iff. a is a measurable function such that a(t) ∈ φ(t, a(t))

for every t ∈ T .

Define Φ : T ⇒ A by Φ(t) = {a ∈ A | a ∈ φ(t, a)}. Then,

(E) Φ has nonempty closed values,

(F) Φ is measurable, and

(G) a : T → A is an ECP for Γ iff. a is a measurable selection from Φ.

We immediately have the required result.

Theorem 2.3.5. If Γ satisfies the assumptions of Lemma 2.3.4, then there exists an ECP

for Γ.

2.4 Existence of optimal equilibrium plans

We now complete our program by providing sufficient conditions for the existence of

(ex post) optimal ECPs. Define G : T ⇒ < by G(t) = W ({t} × Ξ(t)) and g : T ⇒ <
by g(t) = sup G(t). Given t ∈ T , G(t) is the set of conditional expected utilities for

the principal that can result from some ECP and g(t) is the supremum of these utilities.

Define C : T ⇒ A by C(t) = W (t, .)−1([g(t),∞)) ∩ Ξ(t). Given t ∈ T , C(t) is the set of

equilibrium action profiles that maximize the principal’s expected utility.

Lemma 2.4.1. Let Γ satisfy the assumptions of Lemma 2.3.1. If W is Caratheodory,

then

(A) g is a measurable selection from G, and

(B) there exists a measurable selection a from Ξ such that g(t) = W (t, a(t)) for every

t ∈ T ; equivalently, there exists a measurable selection a from C.

Lemma 2.4.2. Let Γ satisfy the assumptions of Lemma 2.3.2. If W is Caratheodory, then

conclusions (A) and (B) of Lemma 2.4.1 hold. Moreover, C is measurable with nonempty

closed values.

Continuity assumptions on W yield richer properties of g and C.
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Lemma 2.4.3. Suppose Γ satisfies the assumptions of Lemma 2.3.1 (resp. 2.3.2).

(A) If W is upper semicontinuous, then g is an upper semicontinuous selection from

G, and consequently, g is measurable.

(B) If T is compact metric and W is continuous, then there exists T0 ⊂ T such that

(i) T0 = ∩n∈NTn, where each Tn is open and dense in T ,

(ii) T0 is a Baire space of second category that is dense in T , while T − T0 is a set of

first category; T0 ∈ B(T ) and T − T0 ∈ B(T ), and

(iii) g : T0 → < is a continuous selection from G : T0 ⇒ < and C : T0 ⇒ A is upper

hemicontinuous.

Clearly, the upper semicontinuity of W in (A) is distinct from the Caratheodory

property: one, neither implies, nor is implied by, the other. However, upper semicontinuity

of W does imply that W is measurable. (B) is a generic continuity result. However, note

that, while T0 is “large” topologically, it is not necessarily so in other senses. For instance,

consider the concrete model T = [0, 1] with the Lebesgue measure. It is possible to

construct T0 ⊂ [0, 1] with the properties listed above but with Leb (T0) = 0, i.e., T0 is

negligible in the measure-theoretic sense.

Theorem 2.4.4. Suppose Γ satisfies the assumptions of Lemma 2.3.1 (resp. 2.3.2).

(A) If W is Caratheodory, then there exists an optimal ECP for Γ.

(B) If T is compact metric, W is continuous and |C(t)| = 1 for every t in an open and

dense subset of T , then there exists an optimal ECP for Γ that is continuous on T 0 ⊂ T ,

where T 0 has the same properties as T0, as listed in Lemma 2.4.3(B).

The following is an analogous result in the setting of Lemma 2.3.4 and Theorem 2.3.5.

Theorem 2.4.5. If Γ satisfies the hypotheses of Lemma 2.3.4 and W is Caratheodory,

then there exists an optimal ECP for Γ.

2.5 Analysis of the application

In this section, we provide assumptions about the primitive data Γ∗ that enable the

application of the results of Sections 2.3 and 2.4 to prove the existence of (optimal) equi-

librium coordination plans for Γ∗. As is to be expected, the trade-off evident in Section

2.3 will be reflected here. Roughly, the trade-off is that weaker assumptions on the action

spaces Ai have to be paid for by stronger continuity assumptions on payoff functions ui
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and stronger assumptions regarding the principal’s signal space T . The first result identi-

fies an environment, specified by Assumptions (a), (b), (c) and (e), and a set of contracts,

specified by Assumption (d), that satisfy the assumptions of Lemma 2.3.1.

Before stating our first result regarding Γ∗, we develop some notation. In the following

two results, {Li | i ∈ I} is a family of topological vector spaces. Define L =
∏

i∈I Li; given

the product topology, it is easily verified that L is a topological vector space. If each Li

is a barreled space, then so is L ([28], IV.4.3).7 Given a topological vector space M , let L
be the space of continuous linear functions f : L → M . Given f ∈ L and A ⊂ L, let fA

denote the restriction of f to A. Let LA = {fA | f ∈ L}. Let e : MA × A → M be the

evaluation function defined by e(f, a) = f(a). We now state our first result.

Theorem 2.5.1. Given Γ∗, if

(a) I is countable, and

for every i ∈ I,

(b) Ai is a convex, compact and metrizable barrel in a barreled space Li,

(c) Oi is a compact subset of a normed space M ,

(d) Ti = {α + fA | α ∈ M ∧ f ∈ L} ∩OA
i , and

(e) v∗i is continuous and quasi-concave,

then there exists an ECP for Γ∗. Moreover, if W is Caratheodory, then there exists an

optimal ECP for Γ∗.

The contracts specified in Assumption (d) may be interpreted as two-part tariffs. We

now consider Γ∗ with the intention of applying Lemma 2.3.4.

Theorem 2.5.2. Given Γ∗, if

(a) I is countable, and

for every i ∈ I,

(b) Ai is a convex compact subset of a separable Banach space Li with IntAi 6= ∅,
(c) Oi is a convex, separable and metrizable subset of a topological vector space,

(d) (Ti, Ti) is a complete measurable space, with

Ti =
⋂

a−i∈A−i

{f ∈ OA
i | f(a−i, .) is linear}

and

(e) v∗i is continuous and quasi-concave,
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then there exists an ECP for Γ∗. Moreover, if W is Caratheodory, then there exists an

optimal ECP for Γ∗.

3. The organization design problem

3.1 Principal’s Role (α)

In this section we offer some observations on the organization design problem described

by Role (α) in Section 1.1. We take as exogenously given the data so designated in Section

1.3. Consider an organization design d = {((T d
i , T d

i ), sd
i , A

d
i ), σ

d | i ∈ I}. Let ad be an

optimal ECP given design d. Finding and implementing ad characterizes the principal’s

Role (β).

Suppose D is the set of organization designs and an optimal ECP ad exists for each

d ∈ D. As the example of Section 3.2 will show, the specification of D depends on the

particular design context and the “information technology” (e.g., the language, vocabulary

and grammar constraining the principal’s messages to the agents) and “outcome-generation

technology” (e.g., the production technology of a firm) relevant to that context. Given D,

the principal’s problem of choosing a design amounts to the problem of finding d ∈ D such

that ∫

Ω

P (dω)w ◦ σd(ω, ad ◦ s(ω)) ≥
∫

Ω

P (dω)w ◦ σd′(ω, ad′ ◦ s(ω))

for every d′ ∈ D.

3.2 Example: designing a firm

Consider a firm with I as the set of agents, whose production operations consist of

running the set of activities J ; let I and J be finite. We define a design {((Ti, Ti), si, Ai), σ |
i ∈ I} for this firm.

For every agent and every activity, let [0, 1] be the set of feasible activity levels. Agent

i’s action space is

Ai =
⋂

j∈Ji

{
a ∈ [0, 1]J

∣∣∣ aj = 0 ∧
∑

r∈J

ar = 1

}

where Ji ⊂ J . If a ∈ Ai, then aj is interpreted as being agent i’s contribution to activity

j ∈ J . If j ∈ Ji, then agent i cannot contribute to activity j. Thus, J − Ji is agent i’s

span of control in this design.
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Fix the mapping σ∗ : Ω × <J → O, where O is the outcome space and σ∗(ω, x)

is the outcome that results when the state is ω and x is the profile of activity levels at

which the various activities are operated. σ∗, which represents the firm’s technology, is

exogenously given and fixed. Given the action spaces {Ai | i ∈ I}, the outcome mapping

σ : Ω × A → O is given by σ(ω, a) = σ∗(ω,
∑

i∈I ai). Clearly, the firm’s “outcome-

generation technology” is specified by the set of activities J , the production function σ∗,

and the activity aggregation hypothesis that the profile of aggregate activity levels is

separable across activities, and for each activity, the levels are additive across agents.

Suppose the state space is Ω = [0, 1]K , where K is finite; for simplicity, let T = Ω and

let s be the identity mapping on Ω, i.e., the principal is fully informed about the state. The

state may consist of data such as the firm’s technology, the prevailing conditions in various

input and output markets, and the contractual relations between the firm and buyers,

suppliers and workers. Given Ki ⊂ K, suppose agent i’s information set is Ti = [0, 1]Ki

and si = πKi , where πKi projects [0, 1]K on [0, 1]Ki . Thus, Ki is the set of information

variables whose outcomes are communicated to agent i. The family {Ki | i ∈ I} describes

the firm’s management information system. Clearly, this restricts the communication

possibilities as a given agent either observes a given information variable or not; it is not

possible, for instance, for an agent to observe the sum of two information variables instead

of the two variables. Note that, while each agent’s “message space” is uncountable, the

“dimension” of the message space is constrained to be finite; so, while the “vocabulary”

is rich, the “grammar” restricts the kinds of messages that can be fashioned using the

vocabulary.

Suppose the set of designs D is identified with the set (2J × 2K)I , i.e., we accept

the above-mentioned technological and communication constraints as given. Then, the

number of ways of assigning action spaces and information are finite. Thus, the number

of designs is finite and the problem of choosing among them is quite straightforward.

3.3 Some examples

In this section, we show via examples that the extent of information-sharing implied

by the optimal design varies with the underlying setting. Consequently, a general mono-

tonicity property connecting the optimal design and the extent of information sharing

does not hold. The following data is common to all three examples: Ω = T = {ω1, ω2},
F = T = 2Ω, P = (1/2, 1/2), s : Ω → T is the identity mapping, O = {o1, o2, o3, o4},
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O = 2O, I = {1, 2}, A1 = {U,D}, A2 = {L,R}, λ is given by λ(ω, a) = 1/8 for every

(ω, a) ∈ Ω×A, and σ(ω1, .) : A → O and σ(ω2, .) : A → O are represented by

( L R

U o1 o2

D o3 o4

)
and

( L R

U o4 o3

D o2 o1

)

respectively. For instance, if the state is ω1 and the action choices are (D, R), then the

outcome is o4. Given the purpose of these examples, it is natural to keep the assignment

of action spaces unchanged, while varying only the information dissemination mappings.

Example 3.3.1. Suppose the agents’ payoffs are generated by the mapping

v(o) = (v1(o), v2(o)) =





(1, 1), if o = o1

(4, 0), if o = o2

(0, 4), if o = o3

(2, 2), if o = o4

and w : O → < by w(o) = v1(o) + v2(o).

Thus, the agents’ payoffs in the two states, v ◦ σ(ω1, .) and v ◦ σ(ω2, .), are given in

bimatrix form by

( L R

U 1, 1 4, 0

D 0, 4 2, 2

)
and

( L R

U 2, 2 0, 4

D 4, 0 1, 1

)

respectively; this is not to say that the agents are playing the above bimatrix games in the

two different states. If both agents have full information, i.e., T1 = T2 = Ω, and s1 and s2

are the identity mappings, then the optimal ECP is

a(ω) =
{

(U,L), if ω = ω1

(D,R), if ω = ω2
(3.3.2)

Consequently, the payoff profile is (1, 1) in both states, resulting in the principal’s payoff

being 2 in both states. On the other hand, if the agents are given no information, say

T1 = T2 = {ω1} (so that s1 and s2 are constant mappings), then

a(ω) =
{

(U,R), if ω = ω1

(D,L), if ω = ω2
(3.3.3)

is an optimal ECP, which results in the principal getting payoff 4 in both states. It is clear

from the structure of payoffs that the principal cannot improve upon the latter information

structure.
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Example 3.3.4. Suppose the agents’ payoffs are generated by the mapping

v(o) = (v1(o), v2(o)) =





(2, 2), if o = o1

(2, 1), if o = o2

(1, 2), if o = o3

(0, 0), if o = o4

and w : O → < by w(o) = v1(o) + v2(o).

Thus, the agents’ payoffs in states ω1 and ω2 are given in bimatrix form by

( L R

U 2, 2 2, 1

D 1, 2 0, 0

)
and

( L R

U 0, 0 1, 2

D 2, 1 2, 2

)

respectively. If both agents have full information, then the optimal ECP is given by

(3.3.2), resulting in the principal’s payoff being 4 in both states. On the other hand, if the

agents are given no information, then neither recommendation (U,L), nor recommendation

(D,R), will induce obedience by them. Thus, in this case, the principal’s expected payoff

from any ECP must be less than 4; e.g., (3.3.3) is an ECP for this situation. It is clear from

the structure of payoffs that the principal cannot improve upon the former information

structure.

Example 3.3.5. Suppose the agents’ payoffs are generated by the mapping

v(o) = (v1(o), v2(o)) =





(4, 4), if o = o1

(7, 2), if o = o2

(0, 6), if o = o3

(4, 4), if o = o4

and w : O → < by w(o) = v1(o) + v2(o).

Thus, the agents’ payoffs in states ω1 and ω2 are given in bimatrix form by

( L R

U 4, 4 7, 2

D 0, 6 4, 4

)
and

( L R

U 4, 4 0, 6

D 7, 2 4, 4

)

respectively. It is easy to confirm that, either if both agents are fully informed about the

state or neither is informed about the state, then the optimal ECP is given by (3.3.2).

Consequently, the principal’s payoff is 8 in both states. A third possible information struc-

ture is that agent 1 is fully informed about the state but agent 2 is given no information,
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i.e., T1 = Ω and s1 is the identity mapping, while T2 = {ω1}. In this situation, (3.3.3) is

an optimal ECP. Thus, the optimal information structure in this example is intermediate

between full revelation of the state, as in Example 3.3.4, and no revelation of information,

as in Example 3.3.1.

4. Concluding remarks

We have studied a model of an organization that generalizes the classical notion of a

team. Using this model, we define the notion of “organization design” in terms of choosing

a system of information dissemination within the organization and assigning actions spaces

to the members of the organization. The principal, i.e., the designer of the organization, is

required to choose an organization design whose outcomes are optimal from the principal’s

perspective. The natural way to solve the problem is to adopt a two-step procedure. First,

given a particular design, find the best outcome mapping that satisfies various informa-

tional and incentive constraints. Secondly, compare the best outcome mappings derived in

the first step to arrive at the best design.

This paper is devoted to providing conditions that ensure the solvability of the problem

entailed by the first step. We provide three sets of sufficient conditions. We also provide an

application in which the principal and each agent are linked by an incentive contract. The

setting of the application is such that the privateness of individual contracts is unimportant,

but the very nature of the contracts is crucial for the existence of (optimal) ECPs. For

instance, in one version of the application, restricting the class of contracts to a subset of

affine mappings (a generalization of “two-part tariffs”) is sufficient for guaranteeing the

existence of optimal ECPs. In addition, we provide conditions on the primitives of the

model that ensure the satisfaction of the critical reduced-form assumptions that are made

in the main theorems. These lemmas may be of independent interest.

The second step optimization involved in completing the principal’s program is unfin-

ished business because the class of objects over which one must optimize, i.e., organization

designs, is generally unstructured and there does not seem to be a way to reduce it to

some canonical setting. As we have argued in Section 3.2, the set of feasible designs is

intimately linked to the particular context and only a piecemeal theory may be possible.
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Appendix A

Proof of Lemma 1.3.5. Let a, b ∈ E , with a being an ex post optimal ECP, and let

µ ∈ ∆(T × Ω) be the unique measure such that µ(E × F ) =
∫

E
P ◦ s−1(dt)Λ(t, F ) for

E ∈ T and F ∈ F . By definition, µ(T × .) =
∫

T
P ◦ s−1(dt)Λ(t, .) = P (.). Therefore,

∫

Ω

P (dω)w◦σ(ω, a◦s(ω)) =
∫

Ω

µ(T×dω)w◦σ(ω, a◦s(ω)) =
∫

T×Ω

µ(dt×dω)w◦σ(ω, a◦s(ω))

By the non-Cartesian version of the Fubini-Stone theorem ([27], Exercise 6.2.3),

∫

T×Ω

µ(dt× dω)w ◦ σ(ω, a ◦ s(ω)) =
∫

T

P ◦ s−1(dt)
∫

Ω

Λ(t, dω)w ◦ σ(ω, a ◦ s(ω))

=
∫

T

P ◦ s−1(dt)
∫

Ω

Λ(t, dω)w ◦ σ(ω, a(t))

=
∫

T

P ◦ s−1(dt)W (t, a(t))

where the second equality is a consequence of Λ being regular. By an analogous argument,∫
Ω

P (dω)w ◦ σ(ω, b ◦ s(ω)) =
∫

T
P ◦ s−1(dt)W (t, b(t)). As W (t, a(t)) ≥ W (t, b(t)) for every

t ∈ T , we have

∫

Ω

P (dω)w ◦ σ(ω, a ◦ s(ω)) =
∫

T

P ◦ s−1(dt)W (t, a(t))

≥
∫

T

P ◦ s−1(dt)W (t, b(t)) =
∫

Ω

P (dω)w ◦ σ(ω, b ◦ s(ω))

as required.

Proof of Lemma 2.2.1. The proof proceeds in a number of steps.

(i) As Ω is compact by (a), it follows that <Ω = C(Ω) and the compact-open topology

of <Ω is metrized by the supremum norm ([10], XII.8.2). With this norm, C(Ω) is a Banach

space ([11], V.7.17), and therefore, a Baire space ([10], XIV.4.1).

(ii) Let rca(Ω) be the set of regular countably additive real-valued set functions on

(Ω,B(Ω)). Given the total variation norm, rca(Ω) is a Banach space ([11], III.7.4) with

the closed unit sphere S. By the Riesz representation theorem ([11], IV.6.3), rca(Ω) is

isometrically isomorphic to the conjugate space of C(Ω). As Ω is metric by (a), we have

∆(Ω) ⊂ S ([11], III.9.22).

(iii) As Ω is compact by (a), and vi and σ are continuous by (b), we have vi ◦σ(., b) ∈
C(Ω) for every b ∈ A. For every (t, a) ∈ T × A, Λi(si(t), a, .) ∈ ∆(Ω) ⊂ S. Thus,

23



G : T × A2 → S × C(Ω) is well-defined by G(t, a, b) = (Λi(si(t), a, .), vi ◦ σ(., b)). Define

L : S × C(Ω) → < by L(µ, f) =
∫
Ω

µ(dω)f(ω). As ui = L ◦ G, it suffices to show that G

and L are continuous.

For the rest of this proof, equip rca(Ω) with the C(Ω) topology ([11], V.3.2). Conse-

quently, by (ii) and Alaoglu’s theorem ([11], V.4.2), S is compact.

(iv) Consider a net (tα, aα) ⊂ T ×A converging to (t, a). Define the net (λα) ⊂ ∆(Ω)

by λα(.) = Λi(si(tα), aα, .) and let λ(.) = Λi(si(t), a, .). Consider E ∈ B(Ω) such that

λ(Ē−IntE) = 0. Using (b) and (c), we have λα(E) = Λi(si(tα), aα, E) → Λi(si(t), a, E) =

λ(E). Thus, (λα) converges to λ ([26], II.6.1). It follows that G1 is continuous. Step (i)

and (b) imply that G2 is continuous ([10], XII.3.1).

(v) It remains to show that L is continuous. By the definition of the C(Ω) topology,

L(., f) is continuous for every f ∈ C(Ω). Consider µ ∈ S and f ∈ C(Ω). To show the

continuity of L(µ, .) at f , consider a sequence (fn) ⊂ C(Ω) converging to f . As fn → f

uniformly, fn → f pointwise. As µ is countably additive, Lebesgue’s theorem implies

limn↑∞ L(µ, fn) = L(µ, f). Thus, L(µ, .) is continuous for every µ ∈ S. Therefore, the

identity L(µ, f)−L(µ0, f0) = L(µ−µ0, f − f0)+L(µ−µ0, f0)+L(µ0, f − f0) implies that

it is sufficient to show that L is continuous at (0, 0) ∈ S × C(Ω).

Given f ∈ C(Ω), as S is compact and L(., f) is continuous, L(S, f) ⊂ < is compact,

and therefore, bounded. It follows that

⋃

µ∈S

L(µ, F ) = {L(µ, f) | µ ∈ S ∧ f ∈ F} =
⋃

f∈F

L(S, f) ⊂ <

is bounded for every finite set F ⊂ C(Ω). Therefore, {L(µ, .) | µ ∈ S} is a bounded subset

of L(C(Ω),<) in the topology of pointwise convergence ([28], III.3.3). From this, and the

fact that C(Ω) is a Baire space by (i), it follows that {L(µ, .) | µ ∈ S} is an equicontinuous

set of mappings ([28], III.4.2). So, given an open neighborhood W of 0 ∈ <, there exists

an open neighborhood V of 0 ∈ C(Ω) such that L(µ, V ) ⊂ W for every µ ∈ S, i.e.,

L(S × V ) ⊂ W , as required.

Proof of Lemma 2.2.2. Given (a, b) ∈ A2, the measurability of ui(., a, b) follows from

the non-Cartesian version of the Fubini-Stone theorem ([27], Exercise 6.2.3) and the fact

that si is measurable.

Given t ∈ T , ui(t, ., .) is continuous by an argument that is identical to that of Lemma

2.2.1, modulo trivial modifications as t is fixed in this argument.
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Proof of Lemma 2.2.3. Given (a, b) ∈ A2, the measurability of ui(., a, b) follows from

the non-Cartesian version of the Fubini-Stone theorem ([27], Exercise 6.2.3) and the fact

that si is measurable.

We now fix t ∈ T and show the continuity of ui(t, ., .).

(i) Equipped with the supremum norm, B(Ω,F) is a Banach space ([11], IV.5), and

therefore, a Baire space ([10], XIV.4.1).

(ii) Let ba(Ω) be the set of bounded additive real-valued set functions on (Ω,F). Given

the total variation norm, ba(Ω) is a Banach space ([11], III.7). Let S be the closed unit

sphere of ba(Ω). ba(Ω) is the conjugate space of B(Ω,F) ([11], IV.5.1). Given µ ∈ ba(Ω)

and f ∈ B(Ω,F), let 〈µ, f〉 =
∫
Ω

µ(dω)f(ω).

Henceforth, we equip ba(Ω) with the B(Ω,F) topology ([11], V.3.2). By Alaoglu’s

theorem ([11], V.4.2), S is compact.

(iii) By definition, Λi(si(t), a, .) ∈ ∆(Ω) ⊂ S for every a ∈ A. This and (c) imply

that G : A2 → S × B(Ω,F) is well-defined by G(a, b) = (Λi(si(t), a, .), vi ◦ σ(., b)). Define

L : S × B(Ω,F) → < by L(µ, f) = 〈µ, f〉. Clearly, ui(t, ., .) = L ◦G(., .). Thus, it suffices

to show that G and L are continuous.

(iv) Continuity of G2 follows directly from (c). We show that G1 is continuous.

Consider a net (aα) ⊂ A converging to a. Define the net (λα) by λα(.) = Λi(si(t), aα, .)

and let λ(.) = Λi(si(t), a, .). We show that (λα) converges to λ. Given E ∈ F , (d) implies

lim
α
〈λα, 1E〉 = lim

α
Λi(si(t), aα, E) = Λi(si(t), a, E) = 〈λ, 1E〉

Bilinearity of 〈., .〉 implies that an analogous argument holds when 1E is replaced by a

finite linear combination of functions drawn from {1E | E ∈ F}. Consider f ∈ B(Ω,F).

By definition, there exists a sequence of functions (fm) converging uniformly to f where

each fm is a finite linear combination of functions drawn from {1E | E ∈ F}. Then

lim
α
〈λα, f〉 = lim

α
〈λα, lim

m
fm〉 = lim

α
lim
m
〈λα, fm〉

= lim
m

lim
α
〈λα, fm〉 = lim

m
〈λ, fm〉 = 〈λ, lim

m
fm〉 = 〈λ, f〉

The first and last equalities follow from the definition of f . As λα and λ are countably

additive, the second and fifth equalities follow from Lebesgue’s theorem. The third equality

is justified by the uniform convergence of (fm) to f ([11], I.7.6). The fourth equality follows

from the preceding argument as fm is a finite linear combination of indicator functions.

(v) It remains to show that L is continuous. By the definition of the B(Ω,F) topology,

L(., f) is continuous for every f ∈ B(Ω,F). Consider µ ∈ S and f ∈ B(Ω,F). To show
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the continuity of L(µ, .) at f , consider a sequence (fn) ⊂ B(Ω,F) converging to f . As

fn → f uniformly, fn → f pointwise. As µ is countably additive, Lebesgue’s theorem

implies limn↑∞ L(µ, fn) = L(µ, f). Thus, L(µ, .) is continuous for every µ ∈ S. Therefore,

the identity L(µ, f)−L(µ0, f0) = L(µ− µ0, f − f0) + L(µ− µ0, f0) + L(µ0, f − f0) implies

that it is sufficient to show that L is continuous at (0, 0) ∈ S × B(Ω,F).

Given f ∈ B(Ω,F), as S is compact and L(., f) is continuous, L(S, f) ⊂ < is compact,

and therefore, bounded. It follows that

⋃

µ∈S

L(µ, F ) = {L(µ, f) | µ ∈ S ∧ f ∈ F} =
⋃

f∈F

L(S, f) ⊂ <

is bounded for every finite set F ⊂ B(Ω,F). Therefore, {L(µ, .) | µ ∈ S} is a bounded

subset of L(B(Ω,F),<) in the topology of pointwise convergence ([28], III.3.3). It follows

from this and (i) that {L(µ, .) | µ ∈ S} is an equicontinuous set of mappings ([28], III.4.2).

So, given an open neighborhood W of 0 ∈ <, there exists an open neighborhood V of

0 ∈ B(Ω,F) such that L(µ, V ) ⊂ W for every µ ∈ S, i.e., L(S × V ) ⊂ W , as required.

Proof of Corollary 2.2.4. Clearly, hypotheses (a), (b) and (d) are satisfied. We show

that (c) is satisfied as well. (b′) implies that vi◦σ : Ω×A → < is continuous. Consequently,

a 7→ vi ◦ σ(., a) is a continuous mapping from A into <Ω ([10], XII.3.1), where <Ω is given

the compact-open topology. As Ω is compact, <Ω = C(Ω) ⊂ B(Ω,B(Ω)) and the compact-

open topology on <Ω is metrized by the supremum norm ([10], XII.8.2).

Proof of Lemma 2.2.6. Given a ∈ A, the measurability of W (., a) follows from the

non-Cartesian version of the Fubini-Stone theorem ([27], Exercise 6.2.3).

Fix t ∈ T and consider a net (aα) ⊂ A converging to a. Then w ◦σ(., aα) → w ◦σ(., a)

pointwise. By Lebesgue’s theorem, W (t, aα) → W (t, a).

Proof of Lemma 2.3.1. (A) Assumptions (c) and (d), and Theorems VI.3.1 and VI.3.2

in [4] imply that Bi is upper hemicontinuous, with nonempty and compact values. (d)

also implies that Bi has convex values. Assumption (c) implies that A is convex, compact

and metric. It follows that B is upper hemicontinuous ([12], Lemma A.4), with nonempty,

convex and compact values.

(B) As the properties listed in (A) also hold for B(t, .) : A ⇒ A for every t ∈ T , Ξ has

nonempty values by Theorem 4 in [6]. Define f : T ×A → T ×diag A2 by f(t, a) = (t, a, a).

As A is metrizable, it is Hausdorff, and therefore, diag A2 is closed in A2. (A) implies that

Gr B is closed in T×A2. Thus, Gr B∩(T×diag A2) is closed in T×A2. As f is continuous,
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GrΞ = f−1(Gr B ∩ (T × diag A2)) is closed in T × A. Thus, Ξ has closed values. As A is

compact, Ξ has compact values.

(C) Let π1 project T × A on T . Let E be closed in A. As T and A are compact, E

and T ×E are compact; moreover, (B) implies Gr Ξ is compact. Therefore, GrΞ∩ (T ×E)

is compact. As π1 is continuous, Ξ−(E) = π1(GrΞ ∩ (T × E)) is compact. Since T is

Hausdorff, Ξ−(E) is closed in T . Therefore, Ξ−(E) ∈ B(T ). Consequently, Ξ is measurable.

Thus, Ξ is weakly measurable ([15], Theorem 3.5(i)).

(D) follows from the definitions.

Proof of Lemma 2.3.2. (A), (B) and (D) are proved as in Lemma 2.3.1.

(C) Define π2 : T × A → A by π2(t, a) = a and ψ : T × A ⇒ A by ψ(t, a) =

B(t, a) ∩ π2(t, a). Note that Gr Ξ = {(t, a) ∈ T × A | a ∈ B(t, a)} = {(t, a) ∈ T × A |
ψ(t, a) 6= ∅} = ψ−(A). (A) implies that Gr B is closed in T × A2. Using (b′) and Lemma

B.2, Gr B ∈ B(T × A2) = B(T ) × B(A2). Thus, B is weakly measurable ([15], Theorem

3.5(iii)). As π2 is continuous, it is weakly measurable. Thus, as π2 and B have closed

values, ψ is measurable ([15], Theorem 4.1) and Gr Ξ = ψ−(A) ∈ B(T ×A) = B(T )×B(A).

So, (C) follows from Theorem 3.5(iii) in [15].

Proof of Theorem 2.3.3. This follows from Lemma 2.3.1 (resp. 2.3.2) and Theorem 5.1

in [15].

Proof of Lemma 2.3.4. In order to focus on the main steps, the proofs of some of the

following arguments are collected in Appendix B. For steps (1) to (3), fix i ∈ I.

(1) Define Ui : T × A × Ai → < by Ui(t, a, b) = ui(t, a, a−i, b) − ui(t, a, a) and Fi :

T×A ⇒ Ai by Fi(t, a) = {b ∈ Ai | Ui(t, a, b) > 0}. Let Di = {(t, a) ∈ T×A | Fi(t, a) 6= ∅}.
For every t ∈ T , let Dt

i = {a ∈ A | (t, a) ∈ Di}, and for every a ∈ A, let Da
i = {t ∈ T |

(t, a) ∈ Di}.
(2) By Lemma B.4, Fi(t, .) is lower hemicontinuous for every t ∈ T . By Lemma B.5,

Fi has open convex values in Ai, IntFi(t, a) 6= ∅ for every (t, a) ∈ Di, and Fi is weakly

measurable. By Lemma B.6, Di ∈ T × B(A); Dt
i is open in A for every t ∈ T ; and, for

every a ∈ A, Da
i ∈ T .

(3) It follows from (2) and Theorem 3.2 in [17] that there exists fi : Di → Ai such

that (i) fi(t, a) ∈ Fi(t, a) for every (t, a) ∈ Di; (ii) fi(t, .) : Dt
i → Ai is continuous for

every t ∈ T ; and (iii) fi(., a) : Da
i → Ai is (T ∩Da

i )/B(Ai) measurable for every a ∈ A.

Define φi : T ×A ⇒ Ai by

φi(t, a) =
{ {fi(t, a)}, if (t, a) ∈ Di

Ai, if (t, a) ∈ (T ×A)−Di
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Clearly, φi has nonempty, convex and compact values. Define φ : T ×A ⇒ A by φ(t, a) =
∏

i∈I φi(t, a). We now confirm our claims.

(A) These properties are inherited from the mappings {φi | i ∈ I}.
(B) Let E be open in Ai. If E = ∅, then φ−i (E) = ∅ ∈ T ×B(A). Suppose E 6= ∅. Then

φ−i (E) = [(T×A)−Di]∪f−1
i (E). As Di ∈ T ×B(A) by (2), we have (T×A)−Di ∈ T ×B(A).

fi is [(T ×B(A))∩Di]/B(Ai) measurable ([17], Lemma 4.12). Therefore, f−1
i (E) = C∩Di

for some C ∈ T × B(A). As Di ∈ T × B(A) by (2), it follows that f−1
i (E) ∈ T × B(A),

and therefore, φ−i (E) ∈ T × B(A).

Suppose E belongs to the basis for A, i.e., E =
∏

i∈I Ei, where Ei is open in Ai for

every i ∈ I. Using (a), we have φ−(E) = ∩i∈Iφ
−
i (Ei) ∈ T × B(A).

Let E be open in A. As A is second-countable, E = ∪j∈JEj for a countable family

{Ej | j ∈ J} drawn from the basis for A. Therefore, φ−(E) = ∪j∈Jφ−(Ej) ∈ T × B(A).

As φ is weakly measurable, φ is measurable ([15], Theorem 3.5(ii)).

(C) Fix t ∈ T and i ∈ I. Consider E open in Ai. If E = Ai, then φi(t, .)+(E) = A

is open in A. If E 6= Ai, then φi(t, .)+(E) = fi(t, .)−1(E). As fi(t, .) is continuous by (3),

fi(t, .)−1(E) = Dt
i ∩ U for some U open in A. As Dt

i is open in A by (2), it follows that

φi(t, .)+(E) = Dt
i ∩U is open in A. Thus, φi(t, .) : A ⇒ Ai is upper hemicontinuous. Using

(a), φ(t, .) : A ⇒ A is upper hemicontinuous ([12], Lemma A.4).

(D) Suppose a : T → A is a measurable function such that a(t) ∈ φ(t, a(t)) for

every t ∈ T . Fix t ∈ T and i ∈ I. If (t, a(t)) ∈ Di, then φi(t, a(t)) = {fi(t, a(t))}. As

ai(t) ∈ φi(t, a(t)), this implies ai(t) = fi(t, a(t)) ∈ Fi(t, a(t)). Thus, Ui(t, a(t), ai(t)) > 0,

which is a contradiction. So, (t, a(t)) ∈ (T × A) − Di. This implies Fi(t, a(t)) = ∅, i.e.,

Ui(t, a(t), b) ≤ 0 for every b ∈ Ai. Consequently, a is an ECP.

Conversely, suppose a : T → A is an ECP. By definition, a is measurable. Fix t ∈ T

and i ∈ I. By definition, Ui(t, a(t), b) ≤ 0 for every b ∈ Ai. Thus, Fi(t, a(t)) = ∅.
Consequently, (t, a(t)) ∈ (T ×A)−Di and ai(t) ∈ Ai = φi(t, a(t)). Thus, a(t) ∈ φ(t, a(t))

for every t ∈ T .

(E) Theorem 4 in [6] implies that Φ has nonempty values. We show that A − Φ(t)

is open in A. Let a ∈ A − Φ(t). It follows that a ∈ A − φ(t, a). As A is Hausdorff and

φ has compact values, φ has closed values. As A is compact Hausdorff, it is normal, and

therefore, regular. Consequently, there exist open neighborhoods U1 of a and U2 of φ(t, a),

such that U1 ∩ U2 = ∅. As φ(t, .) is upper hemicontinuous, φ(t, .)+(U2) is open in A. Set

V = U1 ∩ φ(t, .)+(U2). Note that a ∈ V and V is open in A. Moreover, if y ∈ V , then
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φ(t, y) ⊂ U2 ⊂ A − U1 ⊂ A − V . Therefore, y ∈ A − φ(t, y), i.e., y ∈ A − Φ(t). Thus,

V ⊂ A− Φ(t).

(F) Define π2 : T ×A → A by π2(t, a) = a. If E is open in A, then π−1
2 (E) = T ×E ∈

T ×B(A). Therefore, π2 is weakly measurable. By (B), φ is weakly measurable. Therefore,

ψ : T × A ⇒ A, defined by ψ(t, a) = φ(t, a) ∩ π2(t, a) = φ(t, a) ∩ {a}, is measurable ([15],

Theorem 4.1). Thus, Gr Φ = {(t, a) ∈ T × A | a ∈ φ(t, a)} = {(t, a) ∈ T × A | ψ(t, a) 6=
∅} = ψ−(A) ∈ T × B(A). As (T, T ) is complete, Φ is measurable ([15], Theorem 3.5(iii)).

(G) follows from (D) and the definition of Φ.

Proof of Theorem 2.3.5. This follows from Lemma 2.3.4 and Theorem 5.1 in [15].

Proof of Lemma 2.4.1. (A) By Lemma 2.3.1, Ξ is measurable and has nonempty com-

pact values. Therefore, G is measurable ([15], Theorems 6.5 and 3.5(ii)), with nonempty

compact values. Therefore, g(t) ∈ G(t) for every t ∈ T . Moreover, g is measurable ([15],

Theorems 3.5(i) and 6.6).

(B) follows from Theorem 7.1 in [15].

Proof of Lemma 2.4.2. The proofs of claims (A) and (B) follow the lines of the proof

of Lemma 2.4.1. We show the claimed properties of C. Consider t ∈ T . (B) implies that

C(t) 6= ∅. As W (t, .) is continuous, W (t, .)−1([g(t),∞)) is closed in A. As Ξ(t) is compact,

C(t) is closed.

As g is measurable and W is Caratheodory, W−g is Caratheodory. Thus, the mapping

t 7⇒W (t, .)−1([g(t),∞)) = {a ∈ A | W (t, a)− g(t) ≥ 0} is measurable ([15], Theorems 6.4).

By Lemma 2.3.1, Ξ is measurable. Therefore, C is measurable ([15], Theorem 4.1).

Proof of Lemma 2.4.3. (A) By Lemmas 2.3.1 (resp. 2.3.2), Ξ has nonempty compact

values and Gr Ξ is closed in T × A. As A is compact Hausdorff, this means Ξ is upper

hemicontinuous. Thus, t 7→ g(t) = sup W ({t} × Ξ(t)) = sup{W (t, a) | a ∈ Ξ(t)} is upper

semicontinuous ([4], Theorem VI.3.2).

Consider the set [c,∞) for c ∈ <. As g is upper semicontinuous, g−1([c,∞)) is closed

in T . Consequently, g−1([c,∞)) ∈ B(T ). This implies g is measurable as the family

{[c,∞) | c ∈ <} generates B(<).

(B) As T and A are compact metric, they are complete and separable. As Ξ is upper

hemicontinuous, there exists T0 ⊂ T such that (i) is satisfied and Ξ : T0 ⇒ A is continuous

([3], Theorem 1.4.13). (iii) follows immediately ([4], Theorems VI.3.1 and VI.3.2). We

now confirm (ii).
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It follows immediately from (i) that T0 ∈ B(T ) and T − T0 ∈ B(T ). As T is compact

metric, T is complete, and therefore a Baire space ([10], XIV.4.1). T is of second category as

it is a nonempty Baire space ([10], XI.10.5). (i) implies that T0 is topologically complete

([10], XIV.8.3), and therefore, a Baire space ([10], XIV.4.1). (i) also implies that T0 is

dense in T ([10], XI.10.1). As each Tn is open and dense in T , T − Tn is closed in T

and Int (T − Tn) = ∅, i.e., each T − Tn is nowhere dense. As T − T0 = T − ∩n∈NTn =

∪n∈N (T − Tn), T − T0 is a set of first category. If T0 also is of first category, then T is of

first category, a contradiction. So, T0 is of second category.

Proof of Theorem 2.4.4. (A) By Lemma 2.4.1 (resp. 2.4.2), there exists measurable

selection a from Ξ such that g(t) = W (t, a(t)) for every t ∈ T . By Lemma 2.3.1 (resp.

2.3.2), a is an ECP for Γ. Let b be an ECP for Γ. By Lemma 2.3.1 (resp. 2.3.2), b is

a selection from Ξ. Thus, W (t, b(t)) ∈ G(t) for every t ∈ T . Consequently, W (t, b(t)) ≤
sup G(t) = g(t) = W (t, a(t)) for every t ∈ T . The result follows from Lemma 1.3.5.

(B) Using (A), there exists an optimal ECP. Clearly, this ECP is a selection from

C. Suppose T ∗ is an open and dense subset of T such that |C(t)| = 1 for every t ∈ T ∗.

Copying the argument of Lemma 2.4.3(B), T 0 = T ∗ ∩ T0 has all the claimed properties.

Using Lemma 2.4.3(B), C is upper hemicontinuous on T 0. The result follows as C is

singleton-valued on T 0.

Proof of Theorem 2.5.1. If the assumptions of Lemma 2.3.1 are satisfied, then the

result follows from Theorems 2.3.3 and 2.4.5.

(a) and (b) imply that Assumptions (a) and (c) of Lemma 2.3.1 are satisfied. (1.4.1)

implies ui(t, a, b) = v∗i ◦ ti(b) = v∗i ◦ e(ti, b). As (b) implies A is compact, e is continuous

([10], XII.2.4). Therefore, (e) implies that ui is continuous. Assumption (d) of Lemma

2.3.1 is satisfied as (d) and (e) imply that ui(t, a, b−i, .) = v∗i ◦ ti(b−i, .) is quasi-concave.

It remains to verify that Assumption (b) of Lemma 2.3.1 is satisfied.

Suppose (1) Ti is closed in MA, and (2) Ti is equicontinuous on A.

(c) implies that MA is Hausdorff ([10], XII.1.3), and therefore, so is Ti. Let Ti(a) =

{ti(a) ∈ Oi | ti ∈ Ti} for a ∈ A. (c) implies that Ti(a) is compact for every a ∈ A. This

fact, combined with (c) and (2), implies that Ti is compact ([10], XII.6.4). Therefore, (1)

implies Ti = Ti is compact. As T =
∏

i∈I Ti, Assumption (b) of Lemma 2.3.1 is satisfied.

We note the following preliminary fact before verifying (1) and (2).

(0) Suppose f ∈ MA is linear on A, i.e., if a, b ∈ A, λ, µ ∈ < and λa + µb ∈ A, then

f(λa+µb) = λf(a)+µf(b). We show that f has a unique extension f̄ ∈ L, or equivalently,

f = f̄A.
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Consider a ∈ L. As A is a barrel, it is radial. Therefore, there exists λ > 0 such

that λ−1a ∈ A. Define f̄(a) = λf(λ−1a). Note that, if µ > 0 is also such that µ−1a ∈ A,

then λf(λ−1a) = λf(µ−1µλ−1a) = λµλ−1f(µ−1a) = µf(µ−1a). Thus, the definition of

f̄ is independent of the choice of λ. We now check that f̄ is linear. Consider a, b ∈ L.

As A is radial, there exists λ > 0 such that λ−1a, λ−1b, λ−1(a + b) ∈ A. Therefore,

f̄(a + b) = λf(λ−1(a + b)) = λf(λ−1a + λ−1b) = λ[f(λ−1a) + f(λ−1b)] = λf(λ−1a) +

λf(λ−1b) = f̄(a) + f̄(b). Consider a ∈ L and µ ∈ <. As A is radial, there exists λ > 0

such that λ−1a, λ−1µa ∈ A. Therefore, f̄(µa) = λf(λ−1µa) = λµf(λ−1a) = µf̄(a). It is

straightforward to check that f̄ is the unique linear extension of f . f̄ is continuous as f is

continuous at 0. Thus, f has a unique extension f̄ ∈ L, or equivalently, f = f̄A. We now

verify hypotheses (1) and (2).

(1) e is continuous ([10], XII.2.4). (c) implies that Oi is closed in M . Therefore,

OA
i = ∩a∈Ae−1(., a)(Oi) is closed in MA. Consider a point of accumulation of Ti, say g.

As g is also a point of accumulation of OA
i , we have g ∈ OA

i . It remains to show that

g = α + f̄A for some α ∈ M and f̄ ∈ L.

(b) and (c) imply that MA is metrized by d+(f, g) = sup{‖f(a)−g(a)‖ | a ∈ A} ([10],

XII.8.2). Consequently, there exists a sequence (gn) ⊂ Ti converging to g in the d+ metric,

and therefore also converging pointwise. Each gn is of the form gn = αn + fn, where

αn ∈ M and fn ∈ L(A). As A is a barrel, 0 ∈ A. Define α = g(0) and f = g − α. As g is

continuous, so is f . As (gn) converges to g, limn↑∞ ‖αn−α‖ = limn↑∞ ‖gn(0)− g(0)‖ = 0.

For every a ∈ A, we have

‖fn(a)− f(a)‖ = ‖gn(a)− αn − g(a) + α‖ ≤ ‖gn(a)− g(a)‖+ ‖αn − α‖

It follows that limn↑∞ ‖fn(a) − f(a)‖ = 0. Consider a, b ∈ A and λ, µ ∈ < such that

λa + µb ∈ A. As each fn is linear and M is a topological vector space, we have

f(λa + µb) = lim
n↑∞

fn(λa + µb) = λ lim
n↑∞

fn(a) + µ lim
n↑∞

fn(b) = λf(a) + µf(b)

Thus, f is linear on A. By (0), f = f̄A for some f̄ ∈ L. Consequently, g = α + f̄A ∈ Ti.

(2) We now show that Ti is equicontinuous on A. Let Br = {x ∈ M | ‖x‖ < r}.
As Oi is compact, it is bounded. Assume, without loss of generality, that Oi ⊂ B1. If

L2 = {f ∈ L | f(A) ⊂ B2} is equicontinuous on L, then {α + f | α ∈ M ∧ f ∈ L2} is

equicontinuous on L, and therefore, on A. It follows that {α + fA | α ∈ M ∧ f ∈ L2} is

equicontinuous on A. If Ti ⊂ {α+ fA | α ∈ M ∧ f ∈ L2}, then Ti is equicontinuous on A.
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We first show that Ti ⊂ {α + fA | α ∈ M ∧ f ∈ L2}. Consider g = α + f ∈ Ti.

Then, α = g(0) ∈ Oi ⊂ B1 and f ∈ L(A). For every a ∈ A, ‖f(a)‖ = ‖g(a) − α‖ ≤
‖g(a)‖ + ‖α‖ < 2, i.e., f(A) ⊂ B2. By (0), there exists f̄ ∈ L, such that f̄A = f . Thus,

g = α + f̄A. As f̄(A) = f(A) ⊂ B2, we have f̄ ∈ L2.

Finally, we show that L2 is equicontinuous. It suffices to show that L2 is bounded

for the topology of pointwise convergence ([28], III.4.2). Consider L with the topology

of pointwise convergence. We need to show that, for every open neighborhood U ⊂ L of

0 ∈ L, there exists λ ∈ < such that L2 ⊂ λU . It suffices to show this for every U ⊂ L that

belongs to a local base at 0 ∈ L.

Given a ∈ L and E ⊂ M , let (a,E) = {h ∈ L | h(a) ∈ E}. A set U belonging

to a local base for the topology of pointwise convergence on L at 0 ∈ L is of the form

U = ∩k
j=1(a

j , E) for some {a1, . . . , ak} ⊂ L and some open neighborhood E of 0 ∈ M . For

λ ∈ < − {0}, λU = λ ∩k
j=1 (aj , E) = ∩k

j=1λ(aj , E).

As A is a barrel, µj = sup{µ ∈ (0, 1] | µaj ∈ A} exists. Let ν > 0 be such that

B2 ⊂ νE. Let h ∈ L2. Then, h(A) ⊂ B2 ⊂ νE. Thus, h(µja
j) ∈ νE, i.e., h(aj) ∈ λjEj

where λj = ν/µj . Therefore, h ∈ (aj , λjE). Setting λ = max{λj | j = 1, . . . , k}, we have

h ∈ ∩k
j=1(a

j , λE) = ∩k
j=1λ(aj , E) = λU . Thus, L2 ⊂ λU .

Proof of Theorem 2.5.2. If the assumptions of Lemma 2.3.4 are satisfied, then the

result follows from Theorems 2.3.5 and 2.4.5. (a), (b) and (d) imply that Assumptions (a),

(b) and (c) of Lemma 2.3.4 are satisfied. By (1.4.1), ui(t, a, b) = v∗i ◦ ti(b) = v∗i ◦e(πi(t), b).

πi is continuous as it is the projection mapping. e is continuous as A is compact ([10],

XII.2.4). Thus, ui is continuous, and consequently, Caratheodory. (d) and (e) combine

to imply that ui(t, a, b−i, .) is quasi-concave. Thus, Assumption (d) of Lemma 2.3.4 is

satisfied.

Appendix B

Lemma B.1. Suppose

(a) (X, T ) is a topological space, Y ⊂ X, and TY is the subspace topology on Y ,

(b) B(X) (resp. B(Y )) is the σ-algebra generated on X (resp. Y ) by T (resp. TY ).

Then, B(Y ) = {E ∩ Y | E ∈ B(X)}.

Proof. Let F ∈ TY . Then, there exists E ∈ T such that F = E ∩ Y . As E ∈ T , we

have E ∈ B(X). Consequently, TY ⊂ {E ∩ Y | E ∈ B(X)}. As {E ∩ Y | E ∈ B(X)} is a

σ-algebra, it follows that B(Y ) ⊂ {E ∩ Y | E ∈ B(X)}.
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Conversely, let C = {A ∪ (B − Y ) | A ∈ B(Y ) ∧ B ∈ B(X)}. We show below that

B(Y ) = {E∩Y | E ∈ C}. Therefore, we need to show that {E∩Y | E ∈ B(X)} ⊂ {E∩Y |
E ∈ C}. For this, it is sufficient to show that B(X) ⊂ C. It is easy to show that C is a

σ-algebra on X. Moreover, suppose E ∈ T . Then, E ∩ Y ∈ TY ⊂ B(Y ) and E ∈ B(X). It

follows that E = (E ∩ Y ) ∪ (E − Y ) ∈ C. Therefore, T ⊂ C. It follows that B(X) ⊂ C.
To complete the argument, we show that B(Y ) = {E ∩ Y | E ∈ C}. If F ∈ B(Y ),

then F ⊂ Y and F = F ∪ ∅ = F ∪ (∅ − Y ) ∈ C. Consequently, B(Y ) ⊂ {E ∩ Y | E ∈ C}.
Conversely, let A ∈ B(Y ) and B ∈ B(X). Then, [A∪(B−Y )]∩Y = (A∩Y )∪[(B−Y )∩Y ] =

A ∩ Y = A ∈ B(Y ). Therefore, {E ∩ Y | E ∈ C} ⊂ B(Y ).

Lemma B.2. Suppose

(a) {Xi | i ∈ I} is a countable family of separable metric spaces,

(b) for every i ∈ I, Xi is given the Borel σ-algebra B(Xi), and

(c) X =
∏

i∈I Xi is given the product topology and the Borel σ-algebra B(X).

Then, B(X) is identical to the product σ-algebra generated on X by the family of σ-algebras

{B(Xi) | i ∈ I}.
Proof. See Theorem I.1.10 in [26].

Lemma B.3. Given the assumptions of Lemma 2.3.4,

(A) Ui(t, ., .), Ui(t, a, .) and Ui(t, ., b) are continuous for every t ∈ T , a ∈ A and b ∈ Ai,

(B) Ui(., a, b) : T → < is measurable for every (a, b) ∈ A×Ai, and

(C) Ui(., ., b) : T ×A → < is measurable for every b ∈ Ai.

Proof. (A) and (B) follow immediately from the assumptions. (C) follows from (A), (B)

and Theorem 6.1 in [15].

Lemma B.4. Given the assumptions of Lemma 2.3.4, Fi(t, .) is lower hemicontinuous for

every t ∈ T .

Proof. Fix t ∈ T . Lemma B.3(A) implies GrFi(t, .) = {(a, b) ∈ A × Ai | b ∈ Fi(t, a)} =

{(a, b) ∈ A×Ai | Ui(t, a, b) > 0} is open in A×Ai. Let E be open in Ai. Note that

Fi(t, .)−(E) = {a ∈ A | Fi(t, a) ∩ E 6= ∅}
= π1 ({(a, b) ∈ A×Ai | b ∈ Fi(t, a)} ∩A× E)

= π1(Gr Fi(t, .) ∩A× E)

where π1 : A × Ai → A is the projection π1(a, b) = a. As Gr Fi(t, .) and A × E are open

in A × Ai, Gr Fi(t, .) ∩ A × E is open in A × Ai. As π1 is an open mapping, Fi(t, .)−(E)

is open in A.
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Lemma B.5. Given the assumptions of Lemma 2.3.4,

(A) Fi is weakly measurable,

(B) Fi(t, a) is convex and open in Ai for every (t, a) ∈ T ×A, and

(C) IntFi(t, a) 6= ∅ for every (t, a) ∈ Di.

Proof. (A) By definition, for every E ⊂ Ai, we have

F−i (E) = {(t, a) ∈ T ×A | Fi(t, a) ∩ E 6= ∅}
=

⋃

b∈E

{(t, a) ∈ T ×A | b ∈ Fi(t, a)} =
⋃

b∈E

{(t, a) ∈ T ×A | Ui(t, a, b) > 0}

As Ai is compact metric, it is separable. Let C be a countable set that is dense in Ai and

let E be open in Ai. Then, Lemma B.3(A) implies

F−i (E) =
⋃

b∈E∩C

{(t, a) ∈ T ×A | Ui(t, a, b) > 0}

By Lemma B.3(C), {(t, a) ∈ T × A | Ui(t, a, b) > 0} ∈ T × B(A) for every b ∈ E ∩ C. As

E ∩ C is countable, F−i (E) ∈ T × B(A).

(B) follows from Assumption (d) and Lemma B.3(A).

(C) follows from (B) and the definition of Di.

Lemma B.6. Given the assumptions of Lemma 2.3.4,

(A) Di ∈ T × B(A),

(B) Dt
i is open in A for every t ∈ T , and

(C) Da
i ∈ T for every a ∈ A.

Proof. (A) Lemma B.5 implies Di = F−i (Ai) ∈ T × B(A).

(B) Fix t ∈ T . Then, Dt
i = {a ∈ A | Fi(t, a) 6= ∅} = ∪b∈Ai{a ∈ A | Ui(t, a, b) > 0}.

Lemma B.3(A) implies {a ∈ A | Ui(t, a, b) > 0} is open in A for every b ∈ Ai.

(C) Fix a ∈ A. Lemma B.3(A) implies that

Da
i = {t ∈ T | Fi(t, a) 6= ∅} =

⋃

b∈Ai

{t ∈ T | Ui(t, a, b) > 0} =
⋃

b∈C

{t ∈ T | Ui(t, a, b) > 0}

Lemma B.3(B) implies {t ∈ T | Ui(t, a, b) > 0} ∈ T for every b ∈ C. As C is countable,

Da
i ∈ T .
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Notes

1. By “economic” we mean a theory based on rational choice, as opposed to one that

seeks other explanations, e.g., evolutionary theories.

2. A related question is: given an organization design, what features of the environ-

ment will rationalize that design? Answers to this question, say in the case of the firm,

may be found in the literature following [1], [2], [8], [16], [20], [23] and [30]. If observed

designs are interpreted as optimal responses to their environments, then a solution of the

general normative problem also contains the answer to the above question.

3. As shown in [24], using an argument combining the “revelation principle” with an

“obedience principle”, this set-up of the problem is canonical, i.e., a large class of seemingly

different principal-agent problems can be re-cast in this set-up without any substantive loss

of generality.

4. The general model is more complicated in that the principal offers a mechanism

in the first stage, which specifies message spaces for the principal and the agent and an

outcome function that maps message profiles to outcomes. By the revelation principle,

the mechanism offered can be restricted to be a direct mechanism that induces truthful

revelation of types in equilibrium. This, along with the fact that the agent has no pri-

vate information, implies that the types-to-outcome mapping resulting from the truthful

implementation of the mechanism coincides with the outcome function itself, as stated

above.

5. We simply assume the existence of a regular conditional distribution. However,

existence of such a function is guaranteed if Ω and T are separable standard measurable

spaces ([26], V.8.1).

6. This requirement can be dropped if the relevant linear spaces are finite dimensional.

7. Examples of barreled spaces include every l.c.s. that is a Baire space, in particular

Banach spaces and Fréchet spaces ([28], II.7.1). See [28] for other terminology used in the

proof of this result.
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