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Abstract

We provide a characterization of the obligation rules in the context of
minimum cost spanning tree games. We also explore the relation between
obligation rules and random order values of the irreducible cost game -
it is shown that the later is a subset of the obligation rules. Moreover
we provide a necessary and sufficient condition on obligation function
such that the corresponding obligation rule coincides with a random order
value.

1 Introduction

There is a wide range of economic contexts in which aggregate costs have to be
allocated amongst individual agents or components who derive the benefits from
a common project. A firm has to allocate overhead costs amongst its different
divisions. Regulatory authorities have to set taxes or fees on individual users
for a variety of services. If several municipalities use a common water supply
system, they must reach an agreement on how to share the costs of operating it.
In most of these examples, there is no external force such as the market, which
determines the allocation of costs. Thus, the final allocation of costs is decided
either by mutual agreement or by an arbitrator on the basis of some notion of
distributive justice. The main thrust of this area of research is the axiomatic
analysis of allocation rules. Such an axiomatic analysis is supposed to enlighten
an arbitrator on the possible interpretations of fairness while dividing the cost
among the participants.

In this paper, we pursue this axiomatic analysis of cost allocation rules for
a specific class of cost allocation problems known as Minimum Cost Spanning
∗G. Bergantiños thanks the financial support from the Spanish Ministerio de Educación y

Ciencia and FEDER through grant SEJ2005-07637-C02-01/ECON and the Xunta de Galicia
through grant PGIDIT06PXIC300184PN. A. Kar thanks conference participants of the S and
SE Asia regional meeting of the Econometric Society in 2006
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Tree Problems or in short mcstp. The common feature of these problems is
that a group of users has to be connected to a single supplier of some service.
For instance, several towns may draw power from a common power plant, and
hence have to share the cost of the distribution network. There is a positive
cost of connecting each pair of users (towns) as well as a cost of connecting each
user (town) to the common supplier (power plant). A cost game arises because
cooperation reduces aggregate costs - it may be cheaper for town A to construct
a link to town B which is nearer to the power plant, rather than build a separate
link to the plant. An efficient network must be a tree which connects all users
to the common supplier. From economic perspective, the main objective here,
is to divide the cost of efficient network among its beneficiaries. Following is an
example of mcstp.

Example 1.1 See Figure 1, which depicts a minimum cost spanning tree prob-
lem. There are three agents 1, 2 and 3. The source is denoted by 0. These nodes
are represented by circles, where the connection between them are represented by
straight lines. The numbers represent the cost of each connection. For instance
the cost of connection between agent 1 and agent 3 is 2.

The early literature on minimum cost spanning tree problems mainly fo-
cussed on the algorithmic issues of finding an efficient network. Kruskal [1956],
Prim [1957] introduced two different versions of the greedy algorithm for this
purpose. The first game theoretic approach to minimum cost spanning tree
problem is due to Bird (1976). Bird, by constructing an allocation rule, proved
that core of a minimum cost spanning tree problem is always non-empty. In
recent years a number of papers have analyzed this problem from economic
perspective and the literature has grown into two different direction. In one
hand Granot and Huberman (1984), Kar (2002), Bergantiños and Vidal-Puga
(2006a) and Bergantiños and Vidal-Puga (2006b) have discussed various trans-
ferable utility games and used them to construct allocation rules, on the other,
Norde, Moretti and Tijs (2004), Tijs, Branzei, Moretti and Norde (2006) and
Lorenzo-Freire and Lorenzo (2006) have developed a class of allocation methods,
known as the obligation rules.

Granot and Huberman (1984) introduced a TU game associated with the
minimum cost spanning tree problem and analyzed the structure of it’s core and
nucleolus. Kar (2002) characterized the Shapley value (Shapley (1953)) of this
game. Bergantiños and Vidal-Puga (2006a) introduced the irreducible form of
a minimum cost spanning tree problem and looked at an alternative TU game
based on the irreducible form. They also characterized the Shapley value of
this new games in terms of monotonicity type axiom. Parallel to this literature,
Tijs, Branzei, Moretti and Norde (2006) introduced a class of allocation rules
for minimum cost spanning tree problems, known as the obligation rules. A
common feature of the Obligation rules is the fact that players have the possi-
bility to control the cost allocation problem during the construction procedure,
i.e. edge by edge following the Kruskal algorithm, of the minimum cost span-
ning network. Via such a step-by-step cost allocation procedure, players specify
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how to share the cost of each edge according to a predetermined cost allocation
protocol, namely the obligation functions. Lorenzo-Freire and Lorenzo (2006)
characterized the obligation rules in terms of a restricted additivity property.

In this paper we seek to bridge the gap between these two stream of litera-
ture. We show that the obligation rules are actually a generalized version of the
Shapley value. To be precise, we prove that the random order values (which is
itself a generalization of the Shapley value) is a subset of the obligation rules.
We also provide a necessary and sufficient condition to distinguish random or-
der values from the obligation rules. and finally characterize the obligation
rules with two basic monotonicity properties, namely population monotonicity
and strong cost monotonicity. By focussing on the obligation rules, we try to
argue that if one is looking for allocation rules that share the nice properties
of the Shapley value but not anonymous, then obligation rules are the natural
candidates.

In Section 2, we introduce the minimum cost spanning tree problem. In
Section 3 and 4, we discuss the random order values and the obligation rules
respectively. Section 5 explores the relation between random order values and
the obligation rules. Characterization of the obligation rules are provided in
Section 6. Section 7 concludes this paper by looking at the probabilistic values
for general TU games and their relation with the obligation rules.

2 Minimum cost spanning tree problems

Let N ⊂ N = {1, 2, ...} be the set of all possible agents. We are interested in
networks whose nodes are elements of a set N0 = N ∪ {0}, where N ⊂ N is
finite and 0 is a special node called the source. Usually we take N = {1, ..., |N |}
where |N | denotes the cardinal of the set N . Let ΠN denote the set of all orders
in N. Given π ∈ ΠN , let Pre (i, π) denote the set of elements of N which come
before i in the order given by π, i. e. Pre (i, π) = {j ∈ N | π (j) < π (i)} .As
usual, R+ denotes the set of non-negative real numbers. Given a set A, let

∆ (A) =

{
(xi)i∈A ∈ R

A
+ :
∑
i∈A

xi = 1

}

be the simplex in RA.
A cost matrix C = (cij)i,j∈N0

on N represents the cost of direct link between
any pair of nodes. We assume that cij = cji ≥ 0 for each i, j ∈ N0 and cii = 0 for
each i ∈ N0. Since cij = cji we will work with undirected arcs, i.e (i, j) = (j, i) .
We denote the set of all cost matrices over N as CN . Given C, C ′ ∈ CN we
say C ≤ C ′ if cij ≤ c′ij for all i, j ∈ N0. Analogously, given x, y ∈ RN , we say
x ≤ y if xi ≤ yi for all i ∈ N. A minimum cost spanning tree problem, briefly
an mcstp, is a pair (N0, C) where N ⊂ N is the set of agents, 0 is the source,
and C ∈ CN is the cost matrix. Given an mcstp (N0, C) , we define the mcstp
induced by C in S ⊂ N as (S0, C).
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A network g over N0 is a subset of {(i, j) such that i, j ∈ N0} . The elements
of g are called arcs. Given a network g and i, j ∈ N0, we say that i, j ∈ N0

are connected in g if there exists a sequence of arcs {(ih−1, ih)}lh=1 satisfying
(ih−1, ih) ∈ g for all h ∈ {1, 2, ..., l}, i = i0 and j = il. A tree is a network
satisfying that for all i ∈ N , there is a unique sequence of arcs {(ih−1, ih)}lh=1

connecting i and the source. If t is a tree we usually write t =
{(
i0, i
)}
i∈N

where i0 represents the first agent in the unique path in t from i to 0. Given an
mcstp (N0, C) and g ∈ GN , we define the cost associated with g as

c (N0, C, g) =
∑

(i,j)∈g

cij

When there are no ambiguities, we write c (g) or c (C, g) instead of c (N0, C, g).
A minimum cost spanning tree for (N0, C), briefly an mt, is a tree t such

that c (t) = min {c (t′) : t′ is a tree}. It is well-known in the literature of mcstp
that an mt exists, even though it does not necessarily have to be unique. Given
an mcstp (N0, C) we denote the cost associated with any mt t in (N0, C) as
m (N0, C) .

Given an mcstp (N0, C) and an mt t, Bird (1976) defines the minimal net-
work (N0, C

t) associated with t as follows: ctij = max
(k,l)∈t̄ij

{ckl}, where t̄ij denotes

the unique path in t from i to j. Even though this definition is dependent on
the choice of mt t, it is independent of the chosen t. Proof of this can be found,
for instance, in Aarts and Driessen (1993). The irreducible form of an mcstp
(N0, C) is defined as the minimal network (N0, C

∗). If (N0, C
∗) is an irreducible

problem, then we say that C∗ is an irreducible matrix. Bergantiños and Vidal-
Puga (2006a) proves that (N0, C) is irreducible if and only if there exists an mt
t in (N0, C) satisfying the two following conditions:

(A1) t∗ = {(ip−1, ip)}np=1 where i0 = 0.
(A2) Given ip, iq ∈ N0, p < q, then cipiq = max

p<r≤q

{
cir−1ir

}
.

Example 2.1 Let (N0, C) be a mcstp as in Example 1.1. The irreducible ma-
trix associated with (N0, C) is depicted in Figure 2.

One of the most important issues addressed in the literature about mcstp
is how to divide the cost of connecting agents to the source among them. A
(cost allocation) rule is a function f such that f (N0, C) ∈ RN for each mcstp
(N0, C) and

∑
i∈N

fi (N0, C) = m (N0, C) . As usually, fi (N0, C) represents the

cost allocated to agent i. In this paper we focus on the Obligation rules and
random order values. We discuss each of these in detail in Section 4 and 3
respectively. In Section 6, we characterize the obligation rules. Following are
the axioms, we will be using in this paper.

Strong cost monotonicity (SCM). For all mcstp (N0, C) and (N0, C
′) such

that C ≤ C ′, f (N0, C) ≤ f (N0, C
′)
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SCM says that if a number of connection costs increase and the rest of
connection costs (if any) remain the same, no agent can be better off.

SCM is called cost monotonicity in Tijs et al (2006) and solidarity in
Bergantiños and Vidal-Puga (2006a).

Population monotonicity (PM) . For all mcstp (N0, C), S ⊂ T ⊂ N , and
i ∈ S, we have

fi (T0, C) ≤ fi (S0, C) .

PM says that if new agents join a ”society” no agent from the ”initial
society” can be worse off.

The following property is a weak form of anonymity. It says that if two
agents are identical in terms of their connection costs then their cost shares
must be equal.

Equal Treatment of Equals (ETE) . Let (N0, C) be a mcstp such that for
some i, j ∈ N , cki = ckj for all k ∈ N0 \ {i, j}. ETE says that fi (N0, C) =
fj (N0, C).

Next property was introduced in Branzei et al (2004).
Cone-wise positive linearity (CPL) . Let (N0, C) and (N0, C

′) be two mcstp
satisfying that there exists an order σ : {(i, j)}i,j∈N0,i<j

→
{

1, 2, ...., n(n+1)
2

}
such that for all i, j, k, l ∈ N0 satisfying that σ (i, j) ≤ σ (k, l) , then cij ≤ ckl
and c′ij ≤ c′kl. Thus, for each x, x′ ∈ R+

f (N0, xC + x′C ′) = xf (N0, C) + x′f (N0, C
′) .

This property is an additivity property restricted to some subclass of prob-
lems.

It makes no sense to claim additivity in all mcstp because m (N0, C + C ′)
could be different from m (N0, C)+m (N0, C

′) . See Bergantiños and Vidal-Puga
(2006b) for a detailed discussion on this issue.

Constant share of extra cost (CSEC) .
Let (N0, C) , (N0, C

′) , (N0, C
x) and (N0, C

′x) be a set of mcstp satisfying
the following conditions:

• For all i ∈ N, c0i = c0, c′0i = c′0, cx0i = c0 + x, and c′x0i = c′0 + x where
x ∈ R+.

• For all i, j ∈ N, cij = cxij ≤ c0 and c′ij = c′xij ≤ c′0.

Thus,

fi (N0, C
x)− fi (N0, C) = fi (N0, C

′x)− fi (N0, C
′) .

This property is interpreted as follows. A group of agents N faces two
problems (N0, C) and (N0, C

′). In both problems all agents have the same
connection cost to the source (c0i = c0 and c′0i = c′0). Moreover, this cost is
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greater than the connection costs between agents (cij ≤ c0 and c′ij ≤ c′0). Under
these circumstances, an mt implies that any one agent connects directly to the
source, and that the rest connect to the source through this agent. Agents
agree that the correct solution is f . Assume that an error was made and that
the connection cost to the source is x units larger. CSEC states that agents
should share this extra cost x in the same way in both problems.

This property is a generalization of the property of Equal Share of Extra
Costs (ESEC) defined in Bergantiños and Vidal-Puga (2006a). ESEC says
that x must be divided equally among agents.

A game with transferable utility, briefly a TU game, is a pair (N, v) where
v : 2N → R satisfies that v (∅) = 0. Based on a mcstp, we can define a TU game
as follows. Given (N0, C), for each coalition S ⊆ N, consider the aggregate cost
of a minimum cost spanning tree. That is vC(S) = m(S0, C) for all S ⊆ N . Kar
(2002) axiomatized the Shapley value of vC . On the other hand Bergantiños
and Vidal-Puga (2006a) characterized the Shapley value of a game associated
with the irreducible form. This game is defined as, vC∗(S) = m(S0, C

∗) for all
S ⊆ N. In this paper we will concentrate on the later and explore its relation
with the obligation rules.

3 The random order values of the irreducible
game

Weber (1988) defines the random order values of a TU game (N, v). The idea
is the following. Agents arrive sequentially. Each agent receives his marginal
contribution to his predecessors. To each probability distribution over the set
of possible orders, we can define the random order value giving to each agent
his expected marginal contribution.

Let ∆ (ΠN ) be the simplex in RΠN . For each w = (wπ)π∈ΠN
∈ ∆ (ΠN ) we

define the random order value ROV w associated with w as follows. Given the
TU game (N, v) and i ∈ N,

ROV wi (N, v) =
∑
π∈ΠN

wπ (v (Pre (i, π) ∪ {i})− v (Pre (i, π)))

This definition can be easily rewritten as

ROV wi (N, v) =
∑
π∈ΠN

wπ [v (Pre (i, π) ∪ {i})− v (Pre (i, π))]

=
∑

S⊆N\{i}

∑
{π|Pre(i,π)=S}

wπ [v (S ∪ {i})− v (S)]

=
∑

S⊆N\{i}

 ∑
{π|Pre(i,π)=S}

wπ

 [v (S ∪ {i})− v (S)]
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We define the family of rules W in mcstp as the random order values of the
game vC∗ . That is, given w ∈ ∆ (ΠN ), we define fw (N0, C) = ROV w (N, vC∗)
for all mcstp (N0, C). Formally,

fwi (N0, C) =
∑

S⊆N\{i}

 ∑
{π|Pre(i,π)=S}

wπ

 [vC∗ (S ∪ {i})− vC∗ (S)] (1)

and
W = {fw : w ∈ ∆ (ΠN )} .

A well known member of W is the Shapley value. Let us denote this rule
by Φ. Φ = fw, where w is such that all the orders have equal weight. That
is w(π) = 1

|∆(ΠN )| for all π ∈ ∆ (ΠN ). Bergantiños and Vidal-Puga (2006a)
provides a characterization of Φ, in terms of SCM, PM, and ESEC. Following
is an example of random order values.

Example 3.1 Let (N0, C) be a mcstp as in Example 1.1. The TU game asso-
ciated with C∗ is as follows,

vC∗({1}) = vC∗({2}) = 4, vC∗({3}) = 6, vC∗({1, 2}) = 6, vC∗({1, 3}) =
vC∗({2, 3}) = 10, vC∗({1, 2, 3}) = 12.

Let w(π) = 1
|∆(ΠN )| for all π ∈ ∆ (ΠN ) . Then, fw1 (N0, C) = fw2 (N0, C) = 3

and fw3 (N0, C) = 6.

4 Obligation rules

Tijs et al (2006) introduce the family of obligation rules in mcstp. They prove
that each obligation rule satisfy SCM and PM. In this section we present two
axiomatic characterizations of obligation rules. In the first one we characterize
obligation rules as the only rules satisfying SCM, PM, and CPL. In the second
one we characterize obligation rules as the only rules satisfying SCM, PM, and
CSEC.

We first introduce obligation rules formally. We present this definition in
a way a little bit different from Tijs et al (2006) in order to adapt it to the
objectives of our paper.

Given a network g we define P (g) = {Tk (g)}n(g)
k=1 as the partition of N0

in connected components induced by g. Namely, P (g) is the only partition of
N0 satisfying the following two properties: Firstly, if i, j ∈ Tk (g) , i and j are
connected in g Secondly, if i ∈ Tk, j ∈ Tl and k 6= l, i and j are not connected
in g.

Given a network g, let S (P (g) , i) denote the element of P (g) to which i
belongs to.

Kruskal (1956) defines an algorithm for computing an mt. The idea of the
algorithm is to construct a tree by sequentially adding arcs with the lowest

7



cost and without introducing cycles. Formally, Kruskal’s algorithm is defined
as follows. We start with A (C) = {i, j ∈ N0 | i 6= j} and g0 (C) = ∅.

Stage 1: Take an arc (i, j) ∈ A (C) such that cij = min
(k,l)∈A(C)

{ckl} . If there

are several arcs satisfying this condition, select just one. Now
(
i1 (C) , j1 (C)

)
=

(i, j) , A (C) = A (C) \ {(i, j)} and g1 (C) =
{(
i1 (C) , j1 (C)

)}
.

Stage p+ 1. We have defined the sets A (C) and gp (C). Take an arc (i, j) ∈
A (C) such that cij = min

(k,l)∈A(C)
{ckl} . If there are several arcs satisfying this

condition, select just one. Two cases are possible:

1. gp (C) ∪ {(i, j)} has a cycle. Go to the beginning of Stage p + 1 with
A (C) = A (C) \ {(i, j)} and gp (C) the same.

2. gp (C)∪{(i, j)} has no cycles. Take
(
ip+1 (C) , jp+1 (C)

)
= (i, j) , A (C) =

A (C) \ {(i, j)} and gp+1 (C) = gp (C) ∪
{(
ip+1 (C) , jp+1 (C)

)}
. Go to

Stage p+ 2.

This process is completed in |N | stages. We say that g|M | (C) is a tree
obtained following Kruskal’s algorithm. Notice that this algorithm leads to a
tree, but that this is not always unique.

When there is not ambiguity we write A, gp, and (ip, jp) instead of A (C) ,
gp (C) , and (ip (C) , jp (C)) respectively.

Given N ⊂ N , an obligation function for N is a map o assigning to each
S ∈ 2N \ {∅} a vector o (S) which satisfies the following properties.

o-i) o(S) ∈ ∆ (S) .

o-ii) For each S, T ∈ 2N \ {∅}, S ⊂ T and i ∈ S, oi (S) ≥ oi (T ) .

To each obligation function o we can associate an obligation rule fo. The
idea is as follows. At each stage of Kruskal’s algorithm an arc is added to the
network. The cost of this arc will be paid by the agents who benefit from adding
this arc. Each of these agents pays the difference between his obligation before
the arc is added to the network and after it is added. See Tijs et al (2006) for
a more detailed discussion.

We now define fo formally. Given an mcstp (N0, C) , let g|N | be a tree
obtained applying Kruskal’s algorithm to (N0, C) . For each i ∈ N ,

foi (N0, C) =
|N |∑
p=1

cipjp
(
oi
(
S
(
P
(
gp−1

)
, i
))
− oi (S (P (gp) , i))

)
where, by convention, oi (T ) = 0 if the source is in T.

We define the family of obligation rules as

O = {fo : o is an obligation function}

Let us clarify the idea of obligation rules with an example.
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Example 4.1 Let (N0, C) be a mcstp as in Example 1.1. An obligation func-
tion o is as follows, oi(S) = 1

|S| for all i ∈ S and for all S ⊆ N . Let us follow
Kruskal’s algorithm and compute the cost allocation for C.
Step 1: The arc (1, 2) is the cheapest. Thus

{(
i1 (C) , j1 (C)

)}
= {(1, 2)}.

Step 2: The arc (1, 0) is the cheapest among the rest. Thus
{(
i2 (C) , j2 (C)

)}
=

{(1, 0)} .
Step 3: The arc (0, 2) is the cheapest among the rest, but this will form a cycle.
Hence we pick the next cheapest arc, which is either (1, 3) or (2, 3). There is a
tie, so let us select (1, 3). Thus

{(
i3 (C) , j3 (C)

)}
= {(1, 3)}.

Now, we can compute the allocation,
fo1 (N0, C) = c12 [o1({1})− o1({1, 2})] + c10 [o1({1, 2})− 0] + c10 [0− 0] = 3
Similarly fo2 (N0, C) = 3. Finally,
fo3 (N0, C) = c12 [o3({3})− o3({3})]+c10 [o3({3})− o3({3})]+c10 [o3({3})− 0] =
6

Next, we provide an alternative representation of obligation functions. This
representation will be used later to establish the relationship between W and
O.

4.1 Alternative representation of obligation functions

Given N ⊂ N , an obligation function for N is a map d assigning to each
S ∈ 2N \ {∅} a vector d (S) which satisfies the following properties,

d-i)
∑
i∈N

di(N) = 1. For all S ⊂ N,
∑
i∈S

di(S) =
∑
j /∈S

dj(S ∪ j).

d-ii) For all i ∈ N , di(N) ≥ 0. For all S ⊂ N , for all k ∈ N \ S and for all
i ∈ S,

∑
S⊆T⊆N\k

di(T ) ≥ 0.

In Theorem 4.1 we will show that above two definitions of an obligation
function are equivalent. That is, given an o, one can identify a d and vice versa.
We will denote these mappings by d∗(o) and o∗(d) respectively. Let us first
describe d∗(o) and o∗(d). We start with some new notations. Suppose o is an
obligation function for N . Let ∂(o) (or ∂(d)) denotes the set over which o (or
d) is an obligation function. That is ∂(o) = N . For the rest of this paper, we
will use ∂(o) and N interchangeably as per convenience. Let us also define a
new mapping o−k from the set [2N\{k} \ {∅}] as follows. o−k(T ) = o(T ) for all
T ⊆ N \ {k}. It is immediate that o−k is an obligation function for N \ {k}.
Thus ∂(o−k) = N \ {k}.

Description of d∗(o):
For all i ∈ S, d∗i (S, o) = oi(S) when |∂(o)\S| = 0 1. Suppose we have already

defined d∗i (S, o), i ∈ S, for all obligation functions o and coalitions S such that

1Which simply means, for all i ∈ N , d∗i (N, o) = oi(N)

9



|∂(o) \ S| < m. Now we define d∗i (S, o), i ∈ S, for all coalitions S ⊆ ∂(o) such
that |∂(o) \ S| = m. Choose any k ∈ ∂(o) \ S,

d∗i (S, o) = d∗i (S, o
−k)− d∗i (S ∪ {k}, o) (2)

Note that, |∂(o)\S| = m implies |∂(o−k)\S| < m and |∂(o)−(S∪{k})| < m
and hence d∗i (S, o

−k) and d∗i (S ∪ {k}, o) are well defined.
To complete the description, let us illustrate that d does not depend on

the choice of k ∈ ∂(o) \ S either. For |∂(o) \ S| < 2, this is vacuously true.
We can use induction to prove it in general. Assume that our assertion is
correct for all o, S ⊆ ∂(o) such that |∂(o) \ S| < m. Let us prove that the
same is true for S, such that |∂(o) \ S| = m. Since m ≥ 2, there are at
least two agents in ∂(o) \ S. Suppose k, l ∈ ∂(o) \ S. Now, we will show that
for all i ∈ S, d∗i (S, o

−k) − d∗i (S ∪ {k}, o) = d∗i (S, o
−l) − d∗i (S ∪ {l}, o). Since

|∂(o−k) \ S| = m − 1 and |∂(o) \ (S ∪ {k})| = m − 1, by induction hypothesis
d∗i (S, o

−k) and d∗i (S ∪ {k}, o) do not depend upon the choice of agent, so let us
choose l.

d∗i (S, o
−k)− d∗i (S ∪ {k}, o)

=
[
d∗i (S, (o

−k)−l)− d∗i (S ∪ l, o−k)
]
−
[
d∗i (S ∪ k, o−l)− d∗i (S ∪ {k, l}, o)

]
[by Equation 2]

=
[
d∗i (S, (o

−k)−l)− d∗i (S ∪ k, o−l)
]
−
[
d∗i (S ∪ l, o−k)− d∗i (S ∪ {k, l}, o)

]
=
[
d∗i (S, (o

−l)−k)− d∗i (S ∪ k, o−l)
]
−
[
d∗i (S ∪ l, o−k)− d∗i (S ∪ {k, l}, o)

]
[(o−l)−k = (o−k)−l ]

= d∗i (S, o
−l)− d∗i (S ∪ {l}, o) [by Equation 2 and induction step]

Description of o∗(d):
For all S ⊆ ∂(d), for all i ∈ S,

o∗i (S, d) =
∑

S⊆T⊆∂(d)

di(T ) (3)

Theorem 4.1 : o and d are equivalent. That is,

1. o∗(d∗(o)) = o.

2. d∗(o∗(d)) = d.

3. d∗(o) satisfies d-i and d-ii.

4. o∗(d) satisfies o-i and o-ii.

Proof. See Appendix 8.1.

Let us now provide an example to illustrate this equivalence.

Example 4.2 : N = {1, 2, 3, 4}. An obligation function o is described as fol-
lows, oi(S) = 1

|S| for all i ∈ S for all S ⊆ N . Alternative representation of this
obligation function is as follows. For all i ∈ S,

di(S) =
{

1
4 if |S| = 1, 4
1
12 if |S| = 2, 3

10



One can verify that d∗(o) = d and o∗(d) = o. We illustrate these for a couple
of subcoalitions, the rest is left to the readers.

d∗1(12, o)
= d∗1({1, 2}, o−4)− d∗1({1, 2, 4}, o)
= [d∗1({1, 2}, (o−4)−3)− d∗1({1, 2, 3}, o−4)]− [d∗1({1, 2, 4}, o−4)− d∗1({1, 2, 3, 4}, o)]
= [o1({1, 2})− o1({1, 2, 3})]− [o1({1, 2, 4})− o1({1, 2, 3, 4})]

=
(

1
2
− 1

3
− 1

3
+

1
4

)
=

1
12

On the other hand,

o∗1({1, 2}, d) = o∗1({1, 2}, d) + o∗1({1, 2, 3}, d) + o∗1({1, 2, 4}, d) + o∗1({1, 2, 3, 4}, d)

=
(

1
12

+
1
12

+
1
12

+
1
4

)
=

1
2

The next example illustrates that it is not necessary to have di(S) ≥ 0 for
all i ∈ S and for all S ⊆ N . This observation will play a crucial role while
exploring the relationship between W and O.

Example 4.3 : N = {1, 2, 3, 4}. Consider an obligation function ô, as in
Example 4.2 except for the set {1, 2, 3}.

ôi({1, 2, 3}) =
{

1
2 if i = 1
1
4 Otherwise

It is straightforward to check that o satisfies o-i and o-ii. Note that

d∗1(12, ô) = [ô1({1, 2})− ô1({1, 2, 3})]− [ô1({1, 2, 4})− ô1({1, 2, 3, 4})]

=
(

1
2
− 1

2
− 1

3
+

1
4

)
= − 1

12

Since o and d are equivalent, for the rest of this paper, instead of d∗(o) and
o∗(d), we will simply write d(o) and o(d) respectively.

4.2 Alternative representation of obligation rules

The alternative representation of obligation functions, that is d, gives rise to
a new definition of the obligation rules. This representation will reveal the
essential similarity between the obligation rules and the random order values.
In the process, a natural interpretation of d also emerges. The main result of
this section is the following theorem, which rewrites the obligation rules in terms
of d.

11



Theorem 4.2 : If fo ∈ O, then for all i ∈ N, for all mcstp (N0, C)

foi (N0, C) =
∑

S⊆N\{i}

di (N\S, o) [vC∗ (S ∪ {i})− vC∗ (S)] (4)

Proof. See Appendix 8.2.

A quick look at Equation 1 and Equation 4 confirms that they are closely
related. Before proceeding to the next section, where this relation will be in-
vestigated thoroughly, let us end the current discussion with an interpretation
of d. To this end, the following result will be extremely helpful.

Proposition 4.3 Let o be an obligation function. Then∑
S⊆N\{i}

di (N\S, o) = 1

Proof. The proof is straightforward.

∑
S⊆N\{i}

di (N\S, o) =
∑
i∈T

di (T, o) =
∑

{i}⊆T⊆N

di (T, o) = oi ({i} , d)

The last equality follows from Equation 3. By Theorem 4.1, o (d (o)) = o.
Thus, ∑

S⊆N\{i}

di (N\S, o) = oi ({i} , d) = oi ({i}) = 1.

Proposition 4.3 tells us that {di(N \ S, o) | S ⊆ N \ {i}} acts as an weight
system for foi (N0, C) in Equation 4. In the same spirit, Weber (1988) introduced
a class of ‘marginalist values’ for transferrable utility games. In Section 7 we
will formally introduce marginalist values and farther discuss their relation with
obligation rules.

5 Relation between W and O

In the next theorem we study the relationship between W and O. The first part
shows that obligation rules are nothing but generalized random order values.
Next, we identify a necessary and sufficient condition to distinguish between
obligation rules and random order values. In part (iii) we propose an obligation
rule and show that it does not belong to the set of random order values when
population size is strictly greater than 3. If population is less than or equal to
3, then random order values and obligation rules coincide. This is illustrated in
corollary 5.1 as an immediate consequence of part (ii).

Theorem 5.1 : W and O are related as follows,

12



i) W ⊆ O.

ii) Let o be an obligation function. fo ∈ W ⇔ di(S, o) ≥ 0 for all i ∈ S and
for all S ⊆ N .

iii) If |N | > 3, then W ⊂ O.

Proof. See Appendix 8.3.

Corollary 5.1 If |N | ≤ 3, then W = O.

Proof : Suppose N = {1, 2, 3} and o is an obligation function on N . By
d-ii di(N, o) ≥ 0 for all i ∈ N. Now suppose S = {1, 2}. Let us show that
d1({1, 2}, o) ≥ 0. The proof is exactly the same for all S with |S| = 2 and all
i ∈ S.

d1({1, 2}, o) = [d1({1, 2}, o−3)− d1({1, 2, 3}, o)] = [o1({1, 2})− o1({1, 2, 3})] ≥ 0

The last inequality follows from o-ii. Next we show that d1({1}, o) ≥ 0.
Again the proof is exactly the same for all S with |S| = 1.

d1({1}, o) = [d1

(
{1}, o−2

)
− d1({1, 2}, o)]

= [d1

(
{1}, (o−2

)−3
)− d1({1, 3}, o−2)]− d1({1, 2}, o)

= [o1({1})− o1({1, 3})]− [o1({1, 2})− o1({1, 2, 3})]
= [1− o1({1, 3})]− [1− o2({1, 2})] + [1− o2({1, 2, 3})− o3({1, 2, 3})]
= [o3({1, 3}) + o2({1, 2})]− [o2({1, 2, 3}) + o3({1, 2, 3})]
= [o2({1, 2})− o2({1, 2, 3})] + [o3({1, 3})− o3({1, 2, 3})] ≥ 0

Thus when |N | = 3, for all S ⊆ N , and for all i ∈ S, di(S, o) ≥ 0. By part
(iii) of Theorem 5.1, fo ∈ W implying O ⊆ W . Hence by part (i) of Theorem
5.1, W = O. When |N | ≤ 2 the proof is similar and thus omitted.

We say that ō is a simple obligation function if for each S ⊂ N and i ∈ S,
ōi (S) is either 1 or 0. Let SO denote the family of all simple obligation functions.

Consider the family of obligation rules induced by obligation functions which
are a convex combination of simple obligation functions. Next corollary says
that this family is just W.

Corollary 5.2 f ∈W if and only if f = fo
$

where for each S ⊂ N and i ∈ S,
o$i (S) =

∑
ō∈SO

$ōōi (S) and (wō)ō∈SO ∈ ∆ (SO) .

Proof : See Appendix 8.4

The idea of the proof is quite simple. Given a simple obligation function we
can associate an order π ∈ ΠN and vice versa. Now it is easy to prove that W
is the subfamily of O generated by convex hull of simple obligation functions.
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6 Axiomatization of O

In the next theorem we give two axiomatic characterizations of obligation rules.

Theorem 6.1 Let f be a rule in mcstp.
(a) f satisfies SCM, PM, and CPL if and only if f ∈ O.
(b) f satisfies SCM, PM, and CSEC if and only if f ∈ O.

Proof. See Appendix 8.5.
.

Remark 6.1 The properties used in Theorem 6.1 are independent. See Ap-
pendix 8.6 for a proof.

Bergantiños and Vidal-Puga (2006b) introduce the property of Restricted
Additivity (RA). They prove that RA is stronger than CPL, i.e. if a rule f sat-
isfies RA, f also satisfies CPL. Lorenzo-Freire and Lorenzo (2006) characterize
obligation rules as the only rules satisfying RA and SCM. However, RA and
CPL behaves in a different way. SCM is a consequence of RA and PM , whereas
SCM is independent of CPL and PM. Moreover, the proof of the uniqueness
part in both results is completely different. Based on our axiomatization of
obligation rules, we present an alternative characterization of Φ.

Corollary 6.1 Let f be a rule in mcstp. f satisfies SCM, PM, and CSEC
and ETE if and only if f = Φ.

Proof : See Appendix 8.7

7 Conclusion

In this paper, we have tried to bridge the gap between the two streams of
literature, that have evolved recently, on minimum cost spanning tree games.
We have explored the structural relation between the obligation rules and the
random order values and established that random order values are a subset of
the obligation rules. In this section we compare our results to Weber (1988).
The following definitions are due to Weber.

A value f is called a marginalistic value if for each i ∈ N there exists
pi ∈ R{S:S⊂N\{i}} such that

∑
S⊂N\{i}

pi (S) = 1 and

fi (N, v) =
∑

S⊂N\{i}

pi (S) (v (S ∪ {i})− v (S))

14



A value f is called a probabilistic value if for each i ∈ N there exists a
probability pi ∈ ∆ (S : S ⊂ N\ {i}) such that for all TU game (N, v) , fi (N, v)
is the expected marginal contribution of i with respect to pi. Namely,

fi (N, v) =
∑

S⊂N\{i}

pi (S) (v (S ∪ {i})− v (S))

Usually, we denote by fp the probabilistic value induced by p =
{
pi
}
i∈N ..

Weber showed that the marginalistic values are the only rules to satisfy
linearity and dummy axiom over SU . He also proved that on top of linearity
and dummy, if a value satisfy monotonicity axiom then it must be a probabilistic
value.

A value φ satisfies linearity if φ(v1 +v2) = φ(v1)+φ(v2) and φ(c.v) = c.φ(v),
where (N, v1), (N, v2), (N, v) are TU games and c is a scalar.

Suppose a TU game (N, v) is such that for all S ⊆ N \ {i}, v(S ∪ {i}) =
v(S) + v({i}). A value φ satisfies dummy if φi(v) = v({i}).

Suppose a TU game (N, v) is such that for all S ⊆ N \{i}, v(S∪{i})−v(S) ≥
0. A value φ satisfies monotonicity if φi(v) ≥ 0.

Note that neither marginalistic values nor probabilistic values demand effi-
ciency, that is

∑
i∈N φi(v) = v(N). The parallel between our results and Weber

is captured in the following theorem.
Let the class of marginastic values for mcstp is defined as follows. MV =

{fp | pi ∈ R{S:S⊂N\{i}} and
∑

S⊂N\{i}
pi (S) = 1} where

fi (N0, C) =
∑

S⊂N\{i}

pi (S) [vC∗ (S ∪ {i})− vC∗ (S)]

Similarly the class of probabilistic values for mcstp will be denoted as, PV =
{fp | pi ∈ ∆ (S : S ⊂ N\ {i})} where

fi (N0, C) =
∑

S⊂N\{i}

pi (S) [vC∗ (S ∪ {i})− vC∗ (S)]

Theorem 7.1 (a) O ⊆ MV. Moreover, for all i ∈ N and all S ⊂ N\ {i} ,
pi (S) = di (N\S, o) .

(b) O ∩ PV = W

This is an immediate consequence of Theorem 5.1.

In this paper we have emphasized the importance of the obligation rules for
minimum cost spanning tree problems and explored its link with other standard
allocation methods. A future research agenda will be to define and characterize
obligation rules for the general TU games.
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8 Appendix

We prove the results stated in the paper.

8.1 Proof of Theorem 4.1

We prove this result in several steps. These are as follows,
Step 1: o∗(d∗(o)) = o.
Step 2: d∗(o∗(d)) = d.
Step 3: d∗(o) satisfies d-i.
Step 4: d∗(o) satisfies d-ii.
Step 5: o∗(d) satisfies o-i.
Step 6: o∗(d) satisfies o-ii.

Proof of step 1: We want to show that for all S ⊆ N , for all i ∈ S,
o∗i (S, d

∗(o)) = oi(S). This is trivially true when |∂(o) \ S| = 0, because by
Equation 3 and the fact that ∂(d∗(o)) = ∂(o), we have, o∗i (∂(o), d∗(o)) =∑
∂(o)⊆T⊆∂(d∗(o))

d∗i (T, o) = d∗i (∂(o), o) = oi(∂(o)). We will use induction on

|∂(o) \ S| to prove this result. Suppose our assertion is correct for all S, for
all i ∈ S, such that |∂(o) \ S| < κ. We will show that the same is true when
|∂(o) \ S| = κ. Without loss of generality assume that k /∈ S.

By Equation 3,

o∗i (S, d
∗(o)) =

∑
S⊆T⊆∂(o)

d∗i (T, o) =
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T, o)+
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T∪{k}, o)

By Equation 2, this can be written as follows,

o∗i (S, d
∗(o))

=
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T, o) +
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T ∪ {k}, o)

=
∑

S⊆T⊆[∂(o)\{k}]

[
d∗i (T, o

−k)− d∗i (T ∪ {k}, o)
]

+
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T ∪ {k}, o)

=
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T, o
−k)−

∑
S⊆T⊆[∂(o)\{k}]

d∗i (T ∪ {k}, o) +
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T ∪ {k}, o)

=
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T, o
−k) = o∗i (S, d

∗(o−k)) = o−ki (S) (by induction hypothesis)

= oi(S)

Proof of step 2: We want to prove that for all S ⊆ N , for all i ∈ S,
d∗i (S, o

∗(d)) = di(S). This is trivially true when |∂(d) \ S| = 0, because
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d∗i (∂(d), o∗(d)) = o∗i (∂(d), d) =
∑

∂(d)⊆T⊆∂(d)

di(T ) = di(∂(d)). We will use in-

duction on |∂(o) \ S| to prove this result. Suppose our assertion is correct for
all S, for all i ∈ S, such that |∂(o) \ S| < κ. We will show that the same is true
when |∂(o) \ S| = κ.

From step 1, we have, o∗(d∗(o)) = o. Letting o = o∗(d), we get o∗(d∗(o∗(d))) =
o∗(d). That is for all S, for all i ∈ S, o∗i (S, d

∗(o∗(d))) = o∗i (S, d). By Equation
3, this implies∑

S⊆T⊆∂(d)

d∗i (T, o
∗(d)) =

∑
S⊆T⊆∂(d)

di(T )

⇒ d∗i (S, o
∗(d)) +

∑
S⊂T⊆∂(d)

d∗i (T, o
∗(d)) = di(S) +

∑
S⊂T⊆∂(d)

di(T )

⇒ d∗i (S, o
∗(d)) = di(S)

The last step follows from the induction step, which implies d∗i (T, o
∗(d)) =

d∗i (T ), for all T such that S ⊂ T ⊆ ∂(d).

Proof of step 3: It is easy to check that
∑
i∈N

d∗i (∂(o), o) =
∑
i∈N

oi(∂(o)) = 1.

We will use induction to prove
∑
i∈S

d∗i (S, o) =
∑
j /∈S

d∗j (S ∪ {j}, o) for all S ⊂

∂(o). Let us first show that the above is true when |∂(o) \ S| = 1. With-
out loss of generality we can assume that ∂(o) \ S = {k}. By Equation 2,∑
i∈S

d∗i (S, o) =
∑
i∈S

d∗i (S, o
−k) −

∑
i∈S

d∗i (S ∪ {k}, o) =
∑

i∈∂(o−k)

d∗i (∂(o−k), o−k) −∑
i∈∂(o)\{k}

d∗i (∂(o), o) (because ∂(o−k) = S and ∂(o) = S ∪ {k}). Thus by

the first result of step 3,
∑
i∈S

d∗i (S, o) = 1 − [1− d∗k(∂(o), o)] = d∗k(∂(o), o) =

d∗k(S ∪ {k}, o) =
∑
j /∈S

d∗j (S ∪ {j}, o).

Now, suppose that we have proved this result for all S such that |∂(o)\S| <
κ. We will prove the same when |∂(o)\S| = κ. Without loss of generality, assume
that k ∈ ∂(o)\S. By Equation 2,

∑
i∈S

d∗i (S, o) =
∑
i∈S

d∗i (S, o
−k)−

∑
i∈S

d∗i (S∪{k}, o).

Since |∂(o−k) \ S| < κ and |∂(o)− (S ∪ k)| < κ, by the induction hypothesis,∑
i∈S

d∗i (S, o
−k)−

∑
i∈S

d∗i (S ∪ {k}, o)

=

[∑
i∈S

d∗i (S, o
−k)−

∑
i∈S∪k

d∗i (S ∪ {k}, o)

]
+ d∗k(S ∪ {k}, o)

=

 ∑
j∈∂(o)\(S∪k)

d∗j (S ∪ {j}, o−k)−
∑

i∈∂(o)\(S∪k)

d∗j (S ∪ {k, j}, o)

+ d∗k(S ∪ {k}, o)

Thus by Equation 2,∑
i∈S

d∗i (S, o)
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=
∑

j∈∂(o)\(S∪k)

[
d∗j (S ∪ {j}, o−k)− d∗j (S ∪ {k, j}, o)

]
+ d∗k(S ∪ {k}, o)

=
∑

j∈∂(o)\(S∪k)

d∗j (S ∪ {j}, o) + d∗k(S ∪ {k}, o) =
∑
j /∈S

d∗j (S ∪ {j}, o)

This completes step 3.

Proof of step 4: We know that for all i ∈ ∂(o), d∗i (∂(o), o) = oi(∂(o)) ≥ 0
(by o-i). For all S ⊂ ∂(o), for all i ∈ S and for all k ∈ ∂(o) \ S∑
S⊆T⊆[∂(o)\{k}]

d∗i (T, o) =
∑

S⊆T⊆∂(o)

d∗i (T, o)−
∑

S⊆T⊆[∂(o)\{k}]

d∗i (T ∪ {k}, o)

= o∗i (S, d
∗(o))− o∗i (S ∪ {k}, d∗(o)) (by Equation 3)

= oi(S)− oi(S ∪ {k}) (by step 1)
≥ 0 (by o-ii)

Proof of step 5: We need to prove that for all S ⊆ ∂(d), o∗(S, d) ∈ ∆(S).
We will show it in two parts. First, we show that o∗i (S, d) ≥ 0 for all i ∈ S.
If S = ∂(d), this is trivially true, because o∗i (∂(d), d) = di(∂(d)) (by Equation
3)≥ 0 (by d-ii). We will use induction on |∂(d) \ S|. Suppose our assertion
is correct for all S such that |∂(d) \ S| < κ. Let us show the same when
|∂(d) \ S| = κ.

o∗i (S, d) =
∑

S⊆T⊆∂(d)

di(T ) (by Equation 3)

=
∑

S⊆T⊆[∂(d)\{k}]

di(T ) +
∑

S⊆T⊆[∂(d)\{k}]

di(T ∪ {k})

=
∑

S⊆T⊆[∂(d)\{k}]

di(T ) + o∗i (S ∪ {k}, d) (by Equation 3)

≥ 0

The last step follows from d-ii, which implies
∑

S⊆T⊆[∂(d)\{k}]
di(T ) ≥ 0 and

the induction step, which implies o∗i (S ∪ {k}, d) ≥ 0.

Now, let us show that
∑
i∈S

o∗i (S, d) = 1. Again, this is easy to prove when

S = ∂(d). Using d-i and Equation 3, we get,
∑

i∈∂(d)

o∗i (∂(d), d) =
∑

i∈∂(d)

di(∂(d)) =

1. Now, consider any S ⊂ N . By Equation 3,∑
i∈S

o∗i (S, d) =
∑
i∈S

∑
S⊆T⊆∂(d)

di(T )

=
∑

{T |S⊆T⊆∂(d),|T\S|≥1}

∑
i∈S

di(T ) +
∑
i∈S

di(S)

=
∑

{T |S⊆T⊆∂(d),|T\S|≥1}

∑
i∈S

di(T ) +
∑

{T |S⊆T⊆∂(d),|T\S|=0}

∑
i∈T

di(T )
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If we can prove that for all l, such that 1 ≤ l ≤ (|∂(d) \ S| − 1)∑
{T |S⊆T⊆∂(d),|T\S|≥l}

∑
i∈S

di(T ) +
∑

{T |S⊆T⊆∂(d),|T\S|=(l−1)}

∑
i∈T

di(T )

=
∑

{T |S⊆T⊆∂(d),|T\S|≥(l+1)}

∑
i∈S

di(T ) +
∑

{T |S⊆T⊆∂(d),|T\S|=l}

∑
i∈T

di(T ) (5)

then by repeated use Equation 3, we can conclude∑
i∈S

o∗i (S, d)

=
∑

{T |S⊆T⊆∂(d),|T\S|=|∂(d)\S|}

∑
i∈S

di(T ) +
∑

{T |S⊆T⊆∂(d),|T\S|=|∂(d)\S|−1}

∑
i∈T

di(T )

=
∑
i∈S

di(∂(d)) +
∑

{T |S⊆T⊆∂(d),|∂(d)\T |=1}

∑
i∈T

di(T )

=
∑
i∈S

di(∂(d)) +
∑

{T |S⊆T⊆∂(d),|∂(d)\T |=1}

d∂(d)\T (∂(d)) (by d-i)

=
∑
i∈S

di(∂(d)) +
∑

i∈∂(d)\S

di(∂(d)) =
∑
i∈∂(d)

di(∂(d)) = 1

To conclude step 5, now we will prove Equation 3. First, note that∑
{T |S⊆T⊆∂(d),|T\S|=(l−1)}

∑
i∈T

di(T )

=
∑

{T |S⊆T⊆∂(d),|T\S|=(l−1)}

∑
i∈∂(d)\T

di(T ∪ {i}) (by d-i)

=
∑

{T |S⊆T⊆∂(d),|T\S|=(l−1)}

∑
{R|T⊆R⊆∂(d)||R\T |=1}

dR\T (R)

=
∑

{R|S⊆R⊆∂(d),|R\S|=l}

∑
{T |S⊆T⊆R,|R\T |=1}

dR\T (R)

=
∑

{R|S⊆R⊆∂(d),|R\S|=l}

∑
i∈R\S

di(R)

Therefore,∑
{T |S⊆T⊆∂(d),|T\S|≥l}

∑
i∈S

di(T ) +
∑

{T |S⊆T⊆∂(d),|T\S|=(l−1)}

∑
i∈T

di(T )

=
∑

{T |S⊆T⊆∂(d),|T\S|≥l+1}

∑
i∈S

di(T ) +
∑

{T |S⊆T⊆∂(d),|T\S|=l}

∑
i∈S

di(T )

+
∑

{T |S⊆T⊆∂(d),|T\S|=l}

∑
i∈T\S

di(T )

=
∑

{T |S⊆T⊆∂(d),|T\S|≥l+1}

∑
i∈S

di(T ) +
∑

{T |S⊆T⊆∂(d),|T\S|=l}

∑
i∈T

di(T )

19



This proves Equation 3 and completes step 5.

Proof of step 6: We want to prove that for all S ⊂ T ⊆ ∂(d) and for all
i ∈ S, o∗i (S, d) ≥ o∗i (T, d). It is enough to show that o∗i (S, d) ≥ o∗i (S ∪ {k}, d),
which then can be used repeatedly to complete this step. Now,

o∗i (S, d)− o∗i (S ∪ {k}, d) =
∑

S⊆T⊆∂(d)

di(T )−
∑

[S∪{k}]⊆T⊆∂(d)

di(T )

=
∑

S⊆T⊆[∂(d)\{k}]

di(T )

≥ 0 (by d-ii)

8.2 Proof of Theorem 4.2

First, let us introduce some new notations and lemmata, which will be used
later in the main body of proof.

Lemma 8.1 If (N0, C) is an irreducible mcstp, t = {(ip−1, ip)}np=1 is the mt

satisfying (A1) and (A2) , and S =
{
is(1), ..., is(|S|)

}
, then

(a) vC (S) =
|S|∑
q=1

cis(q−1)is(q) where we denote s (0) = 0.

(b) vC (S) − vC
(
S \

{
is(p)

})
= min

{
cis(p−1)is(p) , cis(p)is(p+1)

}
if p < |S| and

vC (S)− vC
(
S \

{
is(|S|)

})
= cis(|S|−1)is(|S|) .

Proof of Lemma 8.1: The proof of this result appears in Bergantiños and
Vidal-Puga (2006a).

Suppose g is a network on N0. A simple mcstp (N0, C
g) induced by the

network g is defined as follows, cgij = 1 if (i, j) ∈ g and cgij = 0 otherwise.

Lemma 8.2 For each mcstp (N0, C), there exists a family
{(
N0, C

gq
)}τ(C)

q=1
of

simple mcstp and a family {xq}τ(C)
q=1 of non-negative real numbers satisfying two

conditions:

(1) C =
τ(C)∑
q=1

xqCg
q

(2) There exists an order σ : {(i, j)}i,j∈N0
→
{

1, 2, ...., n(n+1)
2

}
such that

given {i, j, k, l} ⊆ N0 with σ (i, j) ≤ σ (k, l) we have that cij ≤ ckl and cg
q

ij ≤ c
gq

kl

for each q ∈ {1, ..., τ (C)}.

Proof of Lemma 8.2: The proof of this result appears in Norde et al
(2004).
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Lemma 8.3 For each mcstp (N0, C), there exists a family
{(
N0, C

gq
)}τ(C)

q=1
of

simple mcstp and a family {xq}τ(C)
q=1 of non-negative real numbers such that

(1) C∗ =
τ(C)∑
q=1

xq
(
Cg

q)∗
(2) For all S ⊆ N , vC∗(S) =

τ(C)∑
q=1

xqv(Cgq )∗(S)

Proof of Lemma 8.3: From Lemma 8.2, we know that given a mcstp

(N0, C), there exists a family
{(
N0, C

gq
)}τ(C)

q=1
of simple mcstp and a family

{xq}τ(C)
q=1 of non-negative real numbers satisfying, C =

τ(C)∑
q=1

xqCg
q

and {cij ≤

ckl ⇔ cg
q

ij ≤ cg
q

kl } for all {i, j, k, l} ⊂ N0 and for all q ∈ {1, ..., τ (C)}. Let us
use Prim’s algorithm on C and Cg

q

for all q ∈ {1, ..., τ (C)}. Since cost of the
edges follow the same order over these cost matrices, they must have the same
minimum cost spanning trees. Let us pick one of these minimum cost spanning
trees (say t) and calculate C∗ and

(
Cg

q)∗
. Take any {k, l} ⊆ N0. t̄kl denotes

the unique path from k to l on t. Now,

c∗kl = max
(kl)∈t̄kl

cij

= max
(kl)∈t̄kl

τ(C)∑
q=1

xqcg
q

ij

 (by (1) of Lemma 8.2)

=
τ(C)∑
q=1

xq
[

max
(kl)∈t̄kl

cg
q

ij

]
(by (2) of Lemma 8.2)

=
τ(C)∑
q=1

xq
(
cg
q

kl

)∗
(6)

Therefore C∗ =
τ(C)∑
q=1

xq
(
Cg

q)∗
. One can also easily check that {c∗ij ≤ c∗kl ⇔(

cg
q

ij

)∗
≤
(
cg
q

kl

)∗
} for all {i, j, k, l} ⊂ N0 and for all q ∈ {1, ..., τ (C)}.

Now by Lemma 8.1, (N0, C
∗) has an mt, t∗ = {(ip−1, ip)}np=1. Since cost

of the edges follow the same order over C∗ and
(
Cg

q)∗
, t∗ is also an mt for

(No,
(
Cg

q)∗
) where q ∈ {1, ..., τ (C)}. Suppose, S =

{
is(1), ..., is(|S|)

}
. Then,

vC∗ (S) =
|S|∑
q=1

c∗is(q−1)is(q)
(by Lemma 8.1)

=
|S|∑
q=1

τ(C)∑
q=1

xq
(
cg
q

is(q−1)is(q)

)∗
(by Equation 6)
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=
τ(C)∑
q=1

xq

 |S|∑
q=1

(
cg
q

is(q−1)is(q)

)∗
=

τ(C)∑
q=1

xqv(Cgq )∗(S) (by Lemma 8.1)

Lemma 8.4 For each mcstp (N0, C), there exists a family
{(
N0, C

gq
)}τ(C)

q=1

of simple mcstp and a family {xq}τ(C)
q=1 of non-negative real numbers such that

fo(N0, C) =
τ(C)∑
q=1

xqfo(N0, C
gq ).

Proof of Lemma 8.4: From Lemma 8.2, we know that given a mcstp

(N0, C), there exists a family
{(
N0, C

gq
)}τ(C)

q=1
of simple mcstp and a family

{xq}τ(C)
q=1 of non-negative real numbers satisfying, C =

τ(C)∑
q=1

xqCg
q

and {cij ≤

ckl ⇔ cg
q

ij ≤ cg
q

kl } for all {i, j, k, l} ⊂ N0 and for all q ∈ {1, ..., τ (C)}. Now, we
will use Kruskal’s algorithm on C and Cg

q

for all q ∈ {1, ..., τ (C)}. Since cost
of the edges follow the same order over these cost matrices, Kruskal’s algorithm
will also follow the same path. Formally, at every stage p, gp (C) = gp

(
Cg

q)
and{(

ip+1 (C) , jp+1 (C)
)}

=
{(
ip+1

(
Cg

q)
, jp+1

(
Cg

q))}
for all q ∈ {1, ..., τ (C)}.

Therefore, for all i ∈ N ,

foi (N0, C) =
|N |∑
p=1

cipjp
[
oi
(
S
(
P
(
gp−1(C)

)
, i
))
− oi (S (P (gp(C)) , i))

]
=

|N |∑
p=1

[oi (S (P (gp−1(C)
)
, i
))
− oi (S (P (gp(C)) , i))

] τ(C)∑
q=1

xqcg
q

ipjp


=

τ(C)∑
q=1

xq

 |N |∑
p=1

cg
q

ipjp

[
oi
(
S
(
P
(
gp−1(C)

)
, i
))
− oi (S (P (gp(C)) , i))

]
=

τ(C)∑
q=1

xq

 |N |∑
p=1

cg
q

ipjp

[
oi

(
S
(
P
(
gp−1(Cg

q

)
)
, i
))
− oi

(
S
(
P
(
gp(Cg

q

)
)
, i
))]

=
τ(C)∑
q=1

xqfoi (N0, C
gq )

Now, we are ready to prove Theorem 4.2.
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Proof of Theorem 4.2: Let us denote

f ′i (N0, C) =
∑

S⊆N\{i}

d∗i (N\S, o) [vC∗ (S ∪ {i})− vC∗ (S)]

We must prove that for any mcstp (No, C), f ′(No, C) = fo(No, C).
By Lemma 8.2, there exists a family

{(
N0, C

gq
)}τ(C)

q=1
of simple mcstp and

a family {xq}τ(C)
q=1 of non-negative real numbers such that C =

m(C)∑
q=1

xqCq. By

Lemma 8.4, fo(N0, C) =
τ(C)∑
q=1

xqfo(N0, C
gq ). On the other hand, by Lemma

8.3, we have, vC∗(S) =
τ(C)∑
q=1

xqv(Cgq )∗(S) for all S ⊆ N . Thus,

f ′i (N0, C) =
∑

S⊆N\{i}

d∗i (N\S, o) [vC∗ (S ∪ {i})− vC∗ (S)]

=
∑

S⊆N\{i}

d∗i (N\S, o)

τ(C)∑
q=1

xq
(
v(Cgq )∗(S ∪ {i})− v(Cgq )∗(S ∪ {i})

)
=

τ(C)∑
q=1

xq

 ∑
S⊆N\{i}

d∗i (N\S, o)
[(
v(Cgq )∗(S ∪ {i})− v(Cgq )∗(S ∪ {i})

)]
=

τ(C)∑
q=1

xqf ′i

(
N0, C

gq
)

Hence it will be enough to prove that fo (N0, C) = f ′ (N0, C) when C is a
simple problem.

C partition N0 into (S0, S1, ..., Sm) as follows. If i, j ∈ Sk, then cij = 0.
If i ∈ Sk, j ∈ Sl, and k 6= l, then cij = 1. Without loss of generality we
can assume that 0 ∈ S0. It is trivial to see that foi (N0, C) = 0 if i ∈ S0 and
foi (N0, C) = oi (Sk) if i ∈ Sk, k 6= 0.

We now compute f ′i (N0, C) . Assume that i ∈ S0. Since vC∗ (S ∪ {i}) =
vC∗ (S) for all S ⊆ N\ {i} , we have that

f ′i (N0, C) = 0 = foi (N0, C) .

Assume that i ∈ Sk, k 6= 0. Since vC∗ (S ∪ {i}) = vC∗ (S) when S ∩ Sk 6= ∅,

f ′i (N0, C) =
∑

S∩Sk=∅

d∗i (N\S, o) [vC∗ (S ∪ {i})− vC∗ (S)]

Since vC∗ (S ∪ {i})− vC∗ (S) = 1 when S ∩ Sk = ∅,

f ′i (N0, C) =
∑

S∩Sk=∅

d∗i (N\S, o) =
∑

Sk⊆T⊆N

d∗i (T, o) = oi (Sk)

where the last equality follows from Equation 3.
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8.3 Proof of Theorem 5.1

The following lemmata will be used in the proof of part (ii).

Lemma 8.5 Let ot be an obligation function for N , for all t ∈ {1, 2, · · · , κ}.
Suppose o is a convex combination of these obligation functions. That is, for

all i ∈ S and for all S ⊆ N, oi(S) =
κ∑
t=1

αtoti(S), where
κ∑
t=1

αt = 1. Then

d(o) =
κ∑
t=1

αtd(ot). Alternatively, if d =
κ∑
t=1

αtdt, where dt is an obligation

function for N , for all t = 1, 2, · · · , κ, then o(d) =
κ∑
t=1

αto(dt).

Proof of Lemma 8.5: One can easily check that indeed o is a valid
obligation function for N , that is it satisfies o-i and o-ii. Thus d(o) is also
well defined. We will use induction to show that for i ∈ S and for all S ⊆
∂(o)2, di(S, o) =

κ∑
t=1

αtdi(S, ot). This is easy to show when S = ∂(o), because

di(∂(o), o) = oi(∂(o)) =
κ∑
t=1

αtoti(∂(o)) =
κ∑
t=1

αtdi(∂(o), ot). Suppose we have

proved this result for all S, such that |∂(o) \ S| < κ. We will prove the same
when |∂(o) \ S| = κ. Without loss of generality assume that k /∈ S. Since

o =
κ∑
t=1

αtot, we must have o−k =
κ∑
t=1

αt (ot)−k. Thus

di(S, o) = di(S, o−k)− di(S ∪ {k}, o) (by Equation 2)

=
κ∑
t=1

αtdi(S,
(
ot
)−k)−

κ∑
t=1

αtdi(S ∪ {k}, ot) (by induction)

=
κ∑
t=1

αt
[
di(S,

(
ot
)−k)− di(S ∪ {k}, ot)

]
=

κ∑
t=1

αtdi(S, ot) (by Equation 2)

Alternatively, suppose d =
κ∑
t=1

αtdt, That is for all S ⊆ ∂(d) and for all i ∈ S,

di(S) =
κ∑
t=1

αtdt(S). By Equation 3,

oi(S, d) =
∑

S⊆T⊆∂(d)

di(T ) =
∑

S⊆T⊆∂(d)

κ∑
t=1

αtdti(T ) =
κ∑
t=1

αt
∑

S⊆T⊆∂(d)

dti(T ) =
κ∑
t=1

αtoi(S, dt)

This completes the proof of Lemma 8.5.

2∂(o) = N
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Lemma 8.6 Suppose there are two sets of nonnegative real numbers {θ1, θ2, · · · , θs}

and {θ1, θ2, · · · , θt} such that
s∑
i=1

θi =
t∑

j=1

θj. Then for all i ≤ s and for all j ≤ t,

we can find nonnegative real numbers θji which satisfy the following conditions.

(a) For all j ≤ t,
s∑
i=1

θji = θj. (b) For all i ≤ s,
t∑

j=1

θji = θi.

Proof of Lemma 8.6: We will prove this result by induction on s. If s = 1,
we can choose θj1 = θj for all j ≤ t. Thus condition (a) is trivially satisfied. Since

θj ≥ 0, we have θj1 ≥ 0. Condition (b) is satisfied because θ1 =
t∑

j=1

θj =
t∑

j=1

θj1.

Let us now assume that our hypothesis is true for all s < κ. We will prove
that the same for s = κ. Let us first divide θs into {θjs}tj=1 as follows. Let
θ1
s = min(θs, θ1). If θs < θ1, that is θ1

s = θs, then there is nothing to be
distributed among {θjs}tj=2 and hence θjs = 0 for all j = 2, 3, · · · , t. Otherwise
θ1
s = θ1 and we distribute the residual of θs, that is (θs − θ1) among {θjs}tj=2.

We follow this procedure repeatedly and at each step set θjs = min(residual of
θs, θ

j). Whenever the residual is 0 all the following θjs are set to 0. Formally,
for all j ≤ t

θjs = min

(
max

(
[θs −

j−1∑
k=1

θk], 0

)
, θj

)

Since
s∑
i=1

θi =
t∑

j=1

θj and {θi}si=1 are nonnegative, we must have θs ≤
t∑

j=1

θj ,

that is there will be no residuals left after the t−th step. In other words,
t∑

j=1

θjs = θs. Also note that by construction, θjs ≥ 0 for all j ≤ t. This reduces

the construction to a smaller problem where we can use induction. Formally, the
residual problem is represented by {θ1, θ2, · · · , θs−1} and {θ̄1, θ̄2, · · · , θ̄t}, where

for all j ≤ t, θ̄j = (θj − θjs). Note that
(s−1)∑
i=1

θi =
s∑
i=1

θi − θs =
t∑

j=1

θj −
t∑

j=1

θjs =

t∑
j=1

θ̄j . By induction hypothesis, there exists nonnegative θji for all i ≤ (s − 1)

and j ≤ t such that (a) and (b) are satisfied for the residual problem. Now it is
easy to check that these {θji }i≤(s−1), j≤t along with {θjs}j≤t constitute a possible
construction for the original problem.

(a) For all j ≤ t,
s∑
i=1

θji = θjs +
(s−1)∑
i=1

θji = θjs + θ̄j = θj . Note that
(s−1)∑
i=1

θji = θ̄j

is ensured by the induction hypothesis.

(b) Similarly by induction hypothesis
t∑

j=1

θji = θi for all i < s. It has been

already shown that
t∑

j=1

θjs = θs.
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Lemma 8.7 Let π ∈ ΠN . An obligation function oπ is defined as follows. For
each S ⊂ N and i ∈ S,

oπi (S) =

{
1 if π (i) = min

j∈S
{π(j)}

0 otherwise
(7)

Then,

di(S, oπ) =
{

1 if S = {j|π(j) ≥ |N \ S|} and π(i) = minj∈S π(j)
0 otherwise

Proof of Lemma 8.7: Once again we use induction on |∂(oπ) \ S|. This is
easily done when |∂(oπ) \ S| = 0, because di(∂(oπ), oπ) = oπi (∂(oπ)), which is 1
for i such that π(i) = minj∈∂(oπ) π(j) and 0 otherwise. Suppose our assertion
is true for all S such that |∂(oπ) \ S| < κ. We will show the same when
|∂(oπ) \ S| = κ. Choose any k /∈ S. Let us define an order π−k on N \ {k} as
follows. For all i, j ∈ N \ {k}, π−k(i) < π−k(j)⇔ π(i) < π(j). One can easily
check that o(π−k) = (oπ)−k. Therefore

di(S, oπ) =
[
di(S, (oπ)−k)− di(S ∪ {k}, oπ)

]
(by Equation 3)

=
[
di(S, o(π−k))− di(S ∪ {k}, oπ)

]
Now, if S = {j|π(j) ≥ |∂(oπ)\S|} then π(k) < π(j) for all j ∈ S. Hence S ={

j|π−k(j) ≥ |∂
(
o(π−k)

)
\ S|

}
and π(k) = minj∈S∪{k} π(j). Thus by induction

hypothesis,

di(S, oπ) =
[
di(S, o(π−k))− di(S ∪ {k}, oπ)

]
=
{

(1− 0) = 1 if π(i) = minj∈S π(j)
(0− 0) = 0 otherwise

For all other S, if possible let us pick an k, such that π(k) < π(j) for all j ∈ S.
Once again π(k) = minj∈S∪{k} π(j), but S 6=

{
j|π−k(j) ≥ |∂

(
o(π−k)

)
\ S|

}
.

By induction, for all i ∈ S,

di(S, oπ) =
[
di(S, o(π−k))− di(S ∪ {k}, oπ)

]
= 0− 0 = 0

Finally, all S such that S = ∂(o) \ {k}, where k 6= minj∈∂(o) π(j) are not

covered by the previous cases. For these sets, S = ∂
(
o(π−k)

)
and S∪{k} = ∂(o).

Thus S =
{
j|π−k(j) ≥ |∂

(
o(π−k)

)
\ S|

}
and S ∪ {k} = {j|π(j) ≥ |∂(oπ) \ (S ∪

{k})|}. Moreover, since k 6= minj∈∂(o) π(j), we have π(i) = minj∈S π(j) ⇔
π(i) = minj∈S∪{k} π(j). Therefore by induction

di(S, oπ) =
[
di(S, o(π−k))− di(S ∪ {k}, oπ)

]
=
{

(1− 1) = 0 if π(i) = minj∈S π(j)
(0− 0) = 0 otherwise

This completes the proof of Lemma 8.7.

26



Lemma 8.8 Let π̄ ∈ ΠN . An obligation function oπ̄ is defined as in Equation
7. Then fo

π̄ ∈W .

Proof of Lemma 8.8: From Equation 1, we know that if we can find a
weight system (ŵπ)π∈ΠN

∈ ∆ (ΠN ) such that

fo
π̄

i (N0, C) =
∑

S⊆N\{i}

 ∑
{π|Pre(i,π)=S}

ŵπ

 [vC∗ (S ∪ {i})− vC∗ (S)]

for all i ∈ N and for all mcstp (N0, C) then we are done. By Equation 4, for all
i ∈ N and for all mcstp (N0, C)

fo
π̄

i (N0, C) =
∑

S⊆N\{i}

di
(
N\S, oπ̄

)
[vC∗ (S ∪ {i})− vC∗ (S)]

Thus all we need to find is a weight system (ŵπ)π∈ΠN
∈ ∆ (ΠN ) , such that for

all i ∈ S and for all S ⊆ N ,

di
(
S, oπ̄

)
=

∑
{π|Pre(i,π)=N\S}

ŵπ

Let us consider the following weight system (ŵπ)π∈ΠN
,

ŵπ =
{

1 if π = π̄
0 otherwise

Therefore, for all i ∈ S and for all S ⊆ N∑
{π|Pre(i,π)=N\S}

ŵπ =
{

1 if S = {j|π̄(j) ≥ |N \ S|} and π̄(i) = minj∈S π̄(j)
0 otherwise

= di
(
S, oπ̄

)
(by Lemma 8.7)

Lemma 8.9 Let w ∈ ∆(ΠN ) and ow =
∑

π∈ΠN

wπo
πand oπ is given by Equation

7. Then fo
w ∈W.

Proof of Lemma 8.9: From the definition of the obligation rules using
Kruskal’s algorithm, for all i ∈ N and for all mcstp (N0, C)

fo
w

i (N0, C) =
|N |∑
p=1

cipjp
[
owi
(
S
(
P
(
gp−1

)
, i
))
− owi (S (P (gp) , i))

]
=

|N |∑
p=1

cipjp

[ ∑
π∈ΠN

wπo
π
i

(
S
(
P
(
gp−1

)
, i
))
−
∑
π∈ΠN

wπo
π
i (S (P (gp) , i))

]

=
∑
π∈ΠN

wπ

 |N |∑
p=1

cipjp
[
oπi
(
S
(
P
(
gp−1

)
, i
))
− oπi (S (P (gp) , i))

]
=

∑
π∈ΠN

wπf
oπ

i (N0, C)
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The result follows immediately from Lemma 8.8 and the fact that W is a
convex set.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1: This proof has three steps.

(i) W ⊆ O.

(ii) Let o be an obligation function. fo ∈ W ⇔ di(S, o) ≥ 0 for all i ∈ S and
for all S ⊆ N .

(iii) If |N | > 3, then W ⊂ O.

Proof of (i): Suppose fw ∈ W . Let (N0, C) be a mcstp. From Equation
1, we know that

fwi (N0, C) =
∑

S⊆N\{i}

 ∑
{π|Pre(i,π)=S}

wπ

 [vC∗ (S ∪ {i})− vC∗ (S)]

Let us define for all S ⊆ N and for all i ∈ N \ S,

d̂i (N\S, o) =
∑

{π|Pre(i,π)=S}

wπ

Thus
fwi (N0, C) =

∑
S⊆N\{i}

d̂i (N\S, o) [vC∗ (S ∪ {i})− vC∗ (S)]

To complete the proof, we need to show that d̂ is an obligation rule, that is,
it satisfies d-i and d-ii.

Checking d-i: ∑
i∈N

d̂i(N) =
∑
i∈N

∑
{π|Pre(i,π)=∅}

wπ

=
∑
i∈N

∑
{π|π(i)=1}

wπ

=
∑
π∈ΠN

wπ = 1

Also for all S ⊂ N ,∑
j∈N\S

d̂j(S ∪ {j})

=
∑

j∈N\S

 ∑
{π|Pre(j,π)=N\[S∪{j}]}

wπ
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=
∑

j∈N\S


∑
i∈S


∑

Pre(j, π) = N \ [S ∪ {j}]
π(i) = π(j) + 1

wπ





=
∑
i∈S


∑

j∈N\S


∑

Pre(i, π) = N \ S
π(j) = π(i)− 1

wπ




=

∑
i∈S

 ∑
{π|Pre(i,π)=N\S}

wπ

 =
∑
i∈S

d̂i(S)

Checking d-ii: This follows trivially from the fact that wπ ≥ 0 for all π ∈ ΠN .

Proof of (ii):

Proof of “⇒ ”: This follows immediately from part (i). For all S ⊆ N and for
all i ∈ S, di (S, o) =

∑
{π|Pre(i,π)=N\S}

wπ ≥ 0 because wπ ≥ 0 for all π ∈ ΠN .

Proof of “⇐ ”: Let o be an obligation function on N such that

di(S, o) ≥ 0 for all i ∈ S and for all S ⊆ N (8)

If we can show that o = ow for some w ∈ ∆(ΠN ), where ow =
∑

π∈ΠN

wπo
πand oπ

is given by Equation 7, then by Lemma 8.9, fo ∈ W . In the rest of this proof
we use induction on |N | to show, o =

∑
π∈ΠN

wπo
π for some w ∈ ∆(ΠN ).

Suppose |N | = 2. Without loss of generality we can assume N = {1, 2}.
From d-i we know that d1({1, 2}, o) + d2({1, 2}, o) = 1. Moreover d1({1}, o) =
d2({1, 2}, o) and d2({2}, o) = d1({1, 2}, o). By assumption 8, d1({1}, o), d2({2}, o),
d1({1, 2}, o) and d2({1, 2}, o) are all non negative3. It can be easily checked that
o can be written as follows,

o = d1({1, 2}, o) · oπ1 + d2({1, 2}, o) · oπ2

where π1 and π2 denote the natural order and it’s reverse respectively. Now, let
us assume that our assertion is true for all N such that |N | < κ. We show that
the same is true when |N | = κ. Once again we use a chain of claims to establish

this result. The scheme of the proof is as follows.

Claim 7 : There exist obligation functions {dk}k∈N on N such that d(o) =∑
k∈N

dk(N, o) · dk, where for all k ∈ N , dk satisfies the following conditions.

3By d-ii these are anyway non negative, afact which we explore in corollary
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(a) For all S ⊆ N and for all i ∈ S, dki (S) ≥ 0.

(b) dki (N) =
{

1 if i = k
0 otherwise

(c) If k ∈ S ⊂ N, then for all i ∈ S, dki (S) = 0

Claim 8: Suppose (dk)−k represents the restriction of dk on N \ {k}. That is
for all S ⊆ N \ {k} and for all i ∈ S, (dk)−ki (S) = dki (S). Then (dk)−k is an
obligation function on N \ {k}. In fact o

(
(dk)−k

)
= [o(dk)]−k.

Supposing claim 7 and claim 8 are true, we can proceed as follows. Note that
by claim 7,

(
dk
)−k
i

(S) = dki (S) ≥ 0. Since (dk)−k is an obligation function on
N \ {k}, by induction hypothesis and claim 8, we have

[o(dk)]−k = o
(
(dk)−k

)
=

∑
π−k∈ΠN\{k}

wπ−k · o(π−k) (9)

where ΠN\{k} is the set of all orders on N \ {k} and w ∈ ∆(ΠN\{k}). Now,
we can use π−k to define a new order (k, π−k) on N . (k, π−k) starts with k and
then follows exactly the same sequence as in π−k. For all k ∈ N and for all
π−k ∈ ΠN\{k} we can define obligation functions o(k,π−k) by Equation 7.

Claim 9 : o(dk) =
∑

π−k∈ΠN\{k}

wπ−k · o(k,π−k)

By claim 7, we have d(o) =
∑
k∈N

dk(N, o) · dk. Using Lemma 8.5,

o =
∑
k∈N

dk(N, o) · o(dk)

=
∑
k∈N

dk(N, o)

 ∑
π−k∈ΠN\{k}

wπ−k · o(k,π−k)

 (By claim 9)

=
∑
k∈N

∑
π−k∈ΠN\{k}

[dk(N, o) · wπ−k ]o(k,π−k)

=
∑
π∈ΠN

[dk(N, o) · wπ−k ]oπ

The last inequality follows from the fact ΠN = ∪k∈N{π|π(k) = 1} =
∪k∈N{(k, π−k)|π−k ∈ ΠN\{k}}.

For all π ∈ ΠN , let us denote the coefficient of oπ by w̄π. That is w̄π =
dk(N, o) · wπ−k . Since, dk(N, o) ≥ 0 and wπ−k ≥ 0, we have w̄π ≥ 0. Moreover∑

π∈ΠN

w̄π =
∑
π∈ΠN

[dk(N, o) · wπ−k ]

=
∑
k∈N

∑
π−k∈ΠN\{k}

[dk(N, o) · wπ−k ]
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=
∑
k∈N

dk(N, o)
∑

π−k∈ΠN\{k}

wπ−k

=
∑
k∈N

dk(N, o) (as w ∈ ∆(ΠN\{k}))

= 1 (by d-i)

Thus indeed w̄ ∈ ∆(ΠN ) and o =
∑

π∈ΠN

w̄πo
π. To complete the proof of part

(iii), now we get back to the proves of claim 7, 8 and 9.

Proof of claim 7 : Without loss of generality we can assume that dk(N, o) > 0
for all k ∈ N (otherwise, if there exist an l such that dl(N, o) = 0, then choose
any obligation function dl satisfying (a), (b) and (c) and apply rest of the proof
on N \ {l}). We need to show that there exist obligation functions {dk}k∈N on
N such that d(o) =

∑
k∈N

dk(N, o) ·dk, where for all k ∈ N , dk satisfies properties

(a), (b) and (c). Note that if we can construct such {dk}k∈N , then each dk will
trivially satisfy the property d-ii of obligation rules because of (a)4. Moreover
property (b) will ensure

∑
i∈N

dki (N) = 1. So while constructing {dk}k∈N , apart

from (a), (b) and (c), we need to ensure the following properties

(d) A part of property d-i, which is,
∑
i∈S

dki (S) =
∑
j /∈S

dkj (S ∪ j) for all S ⊂ N

for all k ∈ N .

(e)
∑
k∈N

[dk(N, o) · dki (S)] = di(S, o), for all i ∈ S and for all S ⊆ N .

We will use induction on |S|. If S = N , then the possibility of such a
construction is easy to check. Take any i ∈ N . By (b),

∑
k∈N

[dk(N, o) · dki (S)] =

di(N, o) ·dii(S) = di(N, o). Suppose we have been able to construct {dk(S)}k∈N
for all |S| > κ, satisfying the properties listed above. We will now construct the
same for S ⊂ N such that |S| = κ. Let us fix such an S.

To satisfy (c), we set dki (S) = 0 for all i ∈ S and k ∈ S. This will change
requirements (d) and (e) as follows,

(d́)
∑
i∈S

dki (S) =
∑
j /∈S

dkj (S∪j) for all k ∈ N \S. For k ∈ S, this is trivially true,

as by construction
∑
i∈S

dki (S) = 0 =
∑
j /∈S

dkj (S ∪ j). The second inequality

follows from the induction step, property (c) and the fact that k ∈ S ⇒
k ∈ S ∪ {j} for all j /∈ S.

4Property (a) implies that dk
i (N) ≥ 0 for all i ∈ N . Similarly for all S ⊂ N, for all

l ∈ N \ S and for all i ∈ S,
∑

S⊆T⊆N\{l}
dk

i (T ) ≥ 0.
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(é) di(S, o) =
∑
k∈N

[dk(N, o) · dki (S)] =
∑

k∈N\S
[dk(N, o) · dki (S)] +

∑
k∈S

[dk(N, o) ·

dki (S)] =
∑

k∈N\S
[dk(N, o) · dki (S)].

Now we construct the remaining elements, that is {dki (S)}i∈S,k∈N\S . Let
θk = dk(N, o) ·

∑
j /∈S

dkj (S ∪ j) for all k ∈ N \ S. Let θi = di(S, o) for all i ∈ S.

Note that, by Equation 8 {θi}i∈S are nonnegative numbers and by induction
hypothesis {θk}k∈N\S are also nonnegative. Moreover,

∑
k∈N\S

θk =
∑

k∈N\S

dk(N, o)

∑
j /∈S

dkj (S ∪ j)


=

∑
j /∈S

∑
k∈N\S

dk(N, o) · dkj (S ∪ j)

=
∑
j /∈S

 ∑
k∈N\S

dk(N, o) · dkj (S ∪ j) +
∑
k∈S

dk(N, o) · dkj (S ∪ j)


The last equality follows from the induction hypothesis and property (c), as
k ∈ S implies dkj (S ∪ j) = 0 for all j /∈ S. Thus

∑
k∈N\S

θk =
∑
j /∈S

 ∑
k∈N\S

dk(N, o) · dkj (S ∪ j) +
∑
k∈S

dk(N, o) · dkj (S ∪ j)


=

∑
j /∈S

[∑
k∈N

dk(N, o) · dkj (S ∪ j)

]
=

∑
j /∈S

dj(S ∪ j, o) (by induction hypothesis and (e))

=
∑
i∈S

di(S, o) (by property d-i of the obligation function d(o))

=
∑
i∈S

θi

Applying Lemma 8.6 on {θi}i∈S , {θk}k∈N\S , we can find nonnegative real num-
bers {θki }i∈S,k∈N\S such that

∑
i∈S

θki = θk for all k ∈ N \ S and
∑

k∈N\S
θki = θi

for all i ∈ S. For all i ∈ S and k ∈ N \ S, let dki (S) = θki
dk(N,o) . This completes

the description of {dk(S)}k∈N . By construction, they satisfy properties (a), (b)
and (c). To complete the induction step, we now show that (d́) and (é) are also
satisfied.
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Checking (d́): For k ∈ N\S; we have
∑
i∈S

dki (S) = 1
dk(N,o)

∑
i∈S

θki = 1
dk(N,o)θ

k =

1
dk(N,o)

[
dk(N, o) ·

∑
j /∈S

dkj (S ∪ j)

]
=
∑
j /∈S

dkj (S ∪ j).

Checking (é): For all i ∈ S; we have
∑

k∈N\S
[dk(N, o)·dki (S)] =

∑
k∈N\S

[dk(N, o)·

dki (S)] =
∑

k∈N\S

[
dk(N, o) · θki

dk(N,o)

]
=

∑
k∈N\S

θki = θi = di(S, o).

Proof of claim 8 : We will show that o
(
(dk)−k

)
= [o(dk)]−k, that is for

all S ⊆ N \ {k}, for all i ∈ S, oi
(
S, (dk)−k

)
= oi

(
S, dk

)
. By Equation 3,

oi
(
S, dk

)
=

∑
S⊆T⊆N

dki (T ) =
∑

S⊆T⊆N\{k}
dki (T )+

∑
S⊆T⊂N\{k}

dki (T ∪{k})+dki (N).

From property (c), we have dki (T∪{k}) = 0 for all T ⊂ N\{k} and from property
(b), dki (N) = 0 because i 6= k. Therefore oi

(
S, dk

)
=

∑
S⊆T⊆N\{k}

dki (T ) =∑
S⊆T⊆N\{k}

(dk)−ki (T ) = oi
(
S, (dk)−k

)
. Thus (dk)−k is an obligation rule on

N \ {k}.

Proof of claim 9 : We need to prove o(dk) =
∑

π−k∈ΠN\{k}

wπ−k · o(k,π−k), that

is for all S ⊆ N and for all i ∈ S, oi(S, dk) =
∑

π−k∈ΠN\{k}

wπ−k · o
(k,π−k)
i (S). Let

us remind the readers that o(k,π−k) is defined by Equation 7 and dk satisfies the
properties of claim 7. π̂ = (k, π−k) represents an order on N, where π̂(k) = 1.

Suppose S ⊆ N \{k}. From Equation 7 it is immediate that (oπ̂)−k = o(π−k).
Then for all i ∈ S,

∑
π−k∈ΠN\{k}

wπ−k · oπ̂i (S) =
∑

π−k∈ΠN\{k}

wπ−k · o
(π−k)
i (S). Thus

by Equation 9,
∑

π−k∈ΠN\{k}

wπ−k · oπ̂i (S) = oi(S, dk).

Otherwise if k ∈ S, then for all i ∈ S and i 6= k, we have oπ̂i (S) = 0.
Hence

∑
π−k∈ΠN\{k}

wπ−k · oπ̂i (S) =
∑

π−k∈ΠN\{k}

wπ−k · 0 = 0. Since oπ̂k (S) = 1 and

w ∈ ∆(ΠN\{k}), we have
∑

π−k∈ΠN\{k}

wπ−k · oπ̂k (S) =
∑

π−k∈ΠN\{k}

wπ−k · 1 = 1.

On the other hand by property (c), o(S, dk) =
∑

S⊆T⊆N
dk(T ) = dk(N). Thus

by property (b), oi(S, dk) = 0 for all i ∈ S, i 6= k and ok(S, dk) = 1. Hence∑
π−k∈ΠN\{k}

wπ−k · oπ̂i (S) = oi(S, dk) for all i ∈ S.

Proof of (iii): It will be enough to construct an obligation function ô which
violates the condition di (S, o) ≥ 0 for some i ∈ S and S ⊆ N . Note that such
an obligation function has already been described in example 4.3 when |N | = 4.
We will extend that example here for arbitrary N .
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Let N = {1, 2, · · · , n}. An obligation function ô is described as follows. For
all S ⊆ N and for all i ∈ S, ôi(S) = 1

|S| except when S = {1, 2, · · · (n− 1)}.

ôi({1, 2, · · · , (n− 1)}) =

{
1

(n−2) if i = 1
(n−3)
(n−2)2 otherwise

It is easy to check that ô satisfy o-i. Let us verify that ô satisfies o-ii. We
have to show for all S ⊂ T and for i ∈ S, ôi(S) ≥ ôi(T ). First consider all
S, T such that S,T 6= {1, 2, · · · (n − 1)}. Then ôi(S) = 1

|S| >
1
|T | = ôi(T ) for

all i ∈ S. Next, suppose S = {1, 2, · · · (n − 1)}. There is only one superset
of {1, 2, · · · (n − 1)}, that is T = N . Thus ô1(S) = 1

(n−2) >
1
n = ô1(T ). For

all i ∈ S \ {1}, we have, ôi(S) = (n−3)
(n−2)2 ≥ 1

n = ôi(T ), because |N | = n ≥ 4.
Finally if T = {1, 2, · · · (n−1)}, then |S| ≤ (n−2). Therefore, in case 1 ∈ S, we
have ô1(S) = 1

|S| ≥
1

(n−2) = ô1(T ). For all i ∈ S \ {1}, ôi(S) = 1
|S| ≥

1
(n−2) >

(n−3)
(n−2)2 = ôi(T ). Hence ô satisfies o-ii and it is indeed an obligation function.
However note that

d∗1({1, 2, · · · , (n− 2)}, ô)
= d∗1({1, 2, · · · , (n− 2)}, ô−(n−1)))− d∗1({1, 2, · · · , (n− 1)}, ô)

= [d∗1
(
{1, 2, · · · , (n− 2)}, (ô−(n−1))−n

)
− d∗1({1, 2, · · · , (n− 2), n}, ô−(n−1))]

−[d∗1({1, 2, · · · , (n− 1)}, ô−n)− d∗1(N, ô)]
= [ô1({1, 2, · · · , (n− 2)})− ô1({1, 2, · · · , (n− 2), n})]

−[ô1({1, 2, · · · , (n− 1)})− ô1(N)]

=
(

1
(n− 2)

− 1
(n− 1)

− 1
(n− 2)

+
1
n

)
= − 1

n(n− 1)
< 0

Hence f ô /∈W . This completes the proof.

8.4 Proof of Corollary 5.2

Proof of “⇒ ”: Let fw ∈W. For each π ∈ ΠN , let oπ be the obligation function
defined as in Claim 2 of the proof of Theorem 3.

Because of the proof of STEP 1 of the proof of Theorem 3, fw = fo
w

where
for each S ⊂ N and i ∈ S, owi (S) =

∑
π∈ΠN

wπo
π
i (S) . For each o ∈ SO we

define wo = wπ if o = oπ for some π ∈ ΠN and wo = 0 otherwise. Since
w ∈ ∆ (ΠN ) , (wo)o∈SO ∈ ∆ (SO). Moreover, for each S ⊂ N and i ∈ S,
owi (S) =

∑
o∈SO

wooi (S) .

Proof of “ ⇐ ”: Let fo
′

be such that for each S ⊂ N and i ∈ S, o′i (S) =∑
o∈SO

wooi (S) and (wo)o∈SO ∈ ∆ (SO) .
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For each o ∈ SI we define the order πo ∈ ΠN as follows.

πo (1) = {i ∈ N : oi (N) = 1} .

In general, for each k = 2, ..., |N | ,

πo (k) =
{

i ∈ N \ {πo (1) , ..., πo (k − 1)} :
oi (N \ {πo (1) , ..., πo (k − 1)}) = 1

}
.

Let w = (wπ)π∈ΠN
be such that wπ = wπo if π = πo for some o ∈ SO

and wπ = 0 otherwise. Since (wo)o∈SO ∈ ∆ (SI) , (wπ)π∈ΠN
∈ ∆ (ΠN ) . Hence,

fw ∈W.
Let ow be the obligation function associated with w as in the proof of STEP

1 of the proof of Theorem 3. It is trivial to see that ow = o′.
Because of the proof of STEP 1 of the proof of Theorem 3, fw = fo

w

.
Therefore, fw = fo

′
.

8.5 Proof of Theorem 6.1

The proof of this theorem is a consequence of the following claims.
Claim 1. If f satisfies CPL, then f also satisfies CSEC.
Claim 2. If f ∈ O, then f satisfies SCM, PM, and CPL.
Claim 3. If f satisfies SCM, PM, and CSEC, then f ∈ O.

Proof of Claim 1. Let (N0, C) , (N0, C
′) , (N0, C

x) , and (N0, C
′x) be as in

the definition of CSEC. We can find σ and σ′ satisfying the following conditions:

1. σ (0, i) = σ′ (0, i) = n(n+1)
2 − (i− 1) for all i ∈ N = {1, ..., |N |} , i.e. the

arcs {(0, i)}i∈N are the last arcs in the orders σ and σ′.

2. For all i, j, k, l ∈ N0 satisfying that σ (i, j) ≤ σ (k, l) , cij ≤ ckl and cxij ≤
cxkl.

3. For all i, j, k, l ∈ N0 satisfying that σ′ (i, j) ≤ σ′ (k, l) , c′ij ≤ c′kl and
c′xij ≤ c′xkl.

Consider themcstp
(
N0, Ĉ

)
such that ĉ0i = x for all i ∈ N and ĉij = 0 other-

wise. It is trivial to see that given i, j, k, l ∈ N0 satisfying that σ (i, j) ≤ σ (k, l) ,
ĉij ≤ ĉkl. Moreover, given i, j, k, l ∈ N0 satisfying that σ′ (i, j) ≤ σ′ (k, l) ,
ĉij ≤ ĉkl.

Cx = C + Ce and C ′x = C ′ + Ce. Since f satisfies CPL,

f (N0, C
x) = f (N0, C) + f

(
N0, Ĉ

)
and

f (N0, C
′x) = f (N0, C

′) + f
(
N0, Ĉ

)
.

Now, it is obvious that f satisfies CSEC.
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This finishes the proof of Claim 1.

Proof of Claim 2. Tijs et al (2006) prove that obligation rules satisfy SCM
and PM. The property called SCM in this paper is called cost monotonicity in
Tijs et al (2006).

Bergantiños and Vidal-Puga (2006b) introduce the property of Restricted
Additivity (RA). They prove that RA is stronger than CPL, i.e. if a rule f
satisfies RA, f also satisfies CPL. Lorenzo-Freire and Lorenzo (2006) prove that
obligation rules satisfy RA. Thus, obligation rules satisfy CPL.

This finishes the proof of Claim 2.

Proof of Claim 3. Let f be a rule satisfying SCM, PM, and CSEC.
We prove that f = fo where o is defined as follows. For each S ⊂ N we

define the mcstp
(
S0, C

S
)

where cS0i = 1 for each i ∈ S and cSij = 0 for each
i, j ∈ S. Given S ⊂ N and i ∈ S we define oi (S) = fi

(
S0, C

S
)

We prove that o is an obligation function. Given S ⊂ N,∑
i∈S

oi (S) =
∑
i∈S

fi
(
S0, C

S
)

= m
(
S0, C

S
)

= 1.

Let
(
S0, C

0
)

be such that c0ij = 0 for all i, j ∈ S0.

We know that fi
(
{i}0 , C0

)
= m

(
{i}0 , C0

)
= 0. Since f satisfies PM,

fi
(
S0, C

0
)
≤ fi

(
{i}0 , C0

)
= 0 for each i ∈ S. As m

(
S0, C

0
)

= 0, fi
(
S0, C

0
)

=
0 for each i ∈ S.

Since f satisfies SCM, for each i ∈ S,

oi (S) = fi
(
S0, C

S
)
≥ fi

(
S0, C

0
)

= 0.

Thus, o (S) ∈ ∆ (S) .
Let S, T ∈ 2N \ {∅} be such that S ⊂ T and i ∈ S. Notice that

(
S0, C

T
)

=(
S0, C

S
)
. Since f satisfies PM,

oi (S) = fi
(
S0, C

S
)

= fi
(
S0, C

T
)
≥ fi

(
T0, C

T
)

= oi (T )

We have proved that o is an obligation function. We now prove that f = fo.
Let (N0, C) be an mcstp.

Bergantiños and Vidal-Puga (2006a) prove that if f satisfies SCM, then
f (N0, C) = f (N0, C

∗). Thus, it is enough to prove that f = fo in irreducible
mcstp.

Let (N0, C) be an mcstp where C is irreducible. Let t = {(ip−1, ip)}np=1 be
the mt in (N0, C) satisfying (A1) and (A2)

We prove that f (N0, C) = fo (N0, C) by induction over |N | . If |N | = 1,
fi (N0, C) = foi (N0, C) = c0i. Assume that the results holds when |N | < κ. We
prove it when |N | = κ. We consider two cases:

1. c0i1 ≤ max
{
cip−1ip : p = 2, ..., |N |

}
= ciq−1iq .
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We define S = {i1, ..., iq−1} . Since f and fo satisfy PM, for each i ∈ S,
fi (N0, C) ≤ fi (S0, C) and foi (N0, C) ≤ foi (S0, C) . Moreover, for each i ∈
N \ S, fi (N0, C) ≤ fi ((N \ S)0 , C) and foi (N0, C) ≤ foi ((N \ S)0 , C) .

Bergantiños and Vidal-Puga (2006a) prove that {(ip−1, ip)}q−1
p=1 is an mt in

(S0, C) and {(0, iq)} ∪ {(ip−1, ip)}|N |p=q+1 is an mt in ((N \ S)0 , C) . Thus,

m (S0, C) =
q−1∑
p=1

cip−1ip and m ((N \ S)0 , C) = c0iq +
|N |∑

p=q+1
cip−1ip . By

(A2), c0iq = max
p≤q

{
cip−1ip

}
= ciq−1iq . Hence,

m (S0, C) +m ((N \ S)0 , C) =
|N |∑
p=1

cip−1ip = m (N0, C)

Now it is easy to conclude that, for each i ∈ S, fi (N0, C) = fi (S0, C)
and foi (N0, C) = foi (S0, C) . Moreover, for each i ∈ N \ S, fi (N0, C) =
fi ((N \ S)0 , C) and foi (N0, C) = foi ((N \ S)0 , C) .

Since i1 ∈ S and iq ∈ N \ S, |S| < κ and |N \ S| < κ. By induction
hypothesis, f (S0, C) = fo (S0, C) and f ((N \ S)0 , C) = fo ((N \ S)0 , C)
Thus, f (N0, C) = fo (N0, C) .

2. c0i1 > max
{
cip−1ip : p = 2, ..., |N |

}
= ciq−1iq .

We define the mcstp
(
N0, C

0
)
,
(
N0, C

0x
)
,
(
N0, C

1
)
, and

(
N0, C

1x
)

where
x = c0i1−ciq−1iq and

• c0ij = 0 for all i, j ∈ N0.

• c0x0i = x for all i ∈ N and c0xij = 0 otherwise.

• c10i = c0i − x for all i ∈ N and c1ij = cij otherwise.

• C1x = C.

Since f and fo satisfy CSEC,

f
(
N0, C

1x
)
− f

(
N0, C

1
)

= f
(
N0, C

0x
)
− f

(
N0, C

0
)

and

fo
(
N0, C

1x
)
− fo

(
N0, C

1
)

= fo
(
N0, C

0x
)
− fo

(
N0, C

0
)
.

We proved above that fi
(
N0, C

0
)

= 0 for all i ∈ N.Moreover, foi
(
N0, C

0
)

=
0 for all i ∈ N.
C1 satisfies the following condition,

c10i1 = ciq−1iq = max
{
cip−1ip : p = 2, ..., |N |

}
= max

{
c1ip−1ip : p = 1, ..., |N |

}
= c1iq−1iq .
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By Case 1, f
(
N0, C

1
)

= fo
(
N0, C

1
)

Thus,

f (N0, C) = fo
(
N0, C

1
)

+ f
(
N0, C

0x
)

and

fo (N0, C) = fo
(
N0, C

1
)

+ fo
(
N0, C

0x
)
.

Since fo satisfies CPL, fo
(
N0, C

0x
)

= xfo
(
N0, C

N
)
. Because of the

definition of obligation rules, fo
(
N0, C

N
)

= o (N) . Thus,

fo
(
N0, C

0x
)

= xo (N) = xf
(
N0, C

N
)
.

We now prove that f
(
N0, C

0x
)

= xf
(
N0, C

N
)

Assume that x > 0 is an
integer number. Since f satisfies CSEC,

f(N0, C
0x)− f(N0, C

0(x−1)) = f(N0, C
01)− f(N0, C

0)
= f(N0, C

01) = f
(
N0, C

N
)
.

Hence, f(N0, C
0x) = f(N0, C

0(x−1)) + f(N0, C
N ). By repeating this ar-

gument we get, f(N0, C
0x) = xf(N0, C

N )

Let x be a rational number. We can write x = p
q , where p and q are positive

integers. Using similar arguments to those used before we can prove that
f(N0, C

0p) = qf(N0, C
0x). Since p is an integer, we get f(N0, C

0p) =
pf(N0, C

N ). Therefore,

f(N0, C
0x) =

1
q
f(N0, C

0p) =
p

q
f(N0, C

N ) = xf
(
N0, C

N
)
.

Let x be an irrational number. Consider {xp}∞p=1 a sequence of rational
numbers satisfying that xp ≤ x for all p = 1, ...∞ and lim

p→∞
xp = x. By

CSEC

f
(
N0, C

0x
)
− f

(
N0, C

0xp
)

= f
(
N0, C

0(x−xp)
)
− f(N0, C

0).

As fi(N0, C
0) = 0 for all i ∈ N ,

f
(
N0, C

0x
)

= f
(
N0, C

0xp
)

+ f
(
N0, C

0(x−xp)
)
.

Since C0(x−xp) ≥ C0 and f satisfies SCM , fi
(
N0, C

0(x−xp)
)
≥ fi(N0, C

0) =
0 for each i ∈ N.
As

∑
i∈N

fi
(
N0, C

0(x−xp)
)

= m
(
N0, C

0(x−xp)
)

= x−xp, fi
(
N0, C

0(x−xp)
)
≤

x− xp for each i ∈ N.
Therefore, for each i ∈ N, 0 ≤ fi

(
N0, C

0(x−xp)
)
≤ x− xp. Hence,

0 ≤ lim
p→∞

fi

(
N0, C

0(x−xp)
)
≤ lim
p→∞

(x− xp) = 0.
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Moreover,

lim
p→∞

f
(
N0, C

0xp
)

= lim
p→∞

xpf
(
N0, C

N
)

= xf
(
N0, C

N
)
.

Thus,

f
(
N0, C

0x
)

= lim
p→∞

f
(
N0, C

0xp
)

+ lim
p→∞

f
(
N0, C

0(x−xp)
)

= xf
(
N0, C

N
)
.

This ends the proof of Claim 3.

8.6 Proof of Remark 6.1

• The rule φ(N0, C) = Sh (N, vC) satisfies CPL, CSEC and PM but fails
SCM.

• The equal division rule (that is φi(N0, C) = m(N0,C)
|N | ) satisfies SCM ,

CPL, and CSEC but fails PM.

• For a rule that satisfies SCM and PM but fails to satisfy CSEC, see the
companion paper Bergantiños and Kar (2007b).

8.7 Proof of Corollary 6.1

It is easy to check that Φ satisfies ETE. Since Φ ∈ W ⊆ O, Φ is an obligation
rule and hence SCM , PM, and CSEC are satisfied. We now show that there
is only one rule which satisfies these properties. The proof is very similar to the
one used in Theorem 6.1.

Let (N0, C) be an mcstp where C is irreducible. Let t = {(ip−1, ip)}np=1 be
the mt in (N0, C) satisfying (A1) and (A2).

We use induction over |N | . If |N | = 1, fi (N0, C) = c0i and hence there is
only one rule. Assume that the result holds when |N | < κ. We prove it when
|N | = κ. We consider two cases:

1. c0i1 ≤ max
{
cip−1ip : p = 2, ..., |N |

}
= ciq−1iq . This case is exactly the same

as in the proof of Theorem 6.1 and hence will be omitted. In this case
using induction step we get that there is only one rule f which satisfies
all the axioms.

2. c0i1 > max
{
cip−1ip : p = 2, ..., |N |

}
= ciq−1iq .

We define the mcstp
(
N0, C

0
)
,
(
N0, C

0x
)
,
(
N0, C

1
)
, and

(
N0, C

1x
)

where
x = c0i1−ciq−1iq and

• c0ij = 0 for all i, j ∈ N0.
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• c0x0i = x for all i ∈ N and c0xij = 0 otherwise.

• c10i = c0i − x for all i ∈ N and c1ij = cij otherwise.

• C1x = C.

Since f satisfies CSEC,

fi
(
N0, C

1x
)
− fi

(
N0, C

1
)

= fi
(
N0, C

0x
)
− fi

(
N0, C

0
)

=
x

κ

The last equality follows from the fact that in C0 and C0x all agents
are identical and f satisfies ETE. Thus for all i ∈ N ; fi (N0, C) =
fi
(
N0, C

1
)

+ x
κ . However C1 is a cost matrix which is already covered

in case 1 and we know f(N0, C
1) is unique. Therefore f(N0, C) is also

unique.
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