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Abstract

The importance of Total Factor Productivity (TFP) in explaining output changes is widely
accepted, yet its sources are not well understood. We use a proprietary data set on the floor-level
operations at the Bhilai Rail and Structural Mill (RSM) in India to understand the determinants
of changes in plant productivity between January 2000 and March 2003.

During this period there was a 35% increase in output with minimal changes in the stock of
physical capital or the number of employees, but sizable reductions in the number and duration
of various types of production delays. We model interruptions to the production process as a
function of worker characteristics and find that a large part of the avoidable delay reductions
are attributable to training. Overall, changes in all delays account for over half the changes in
productivity.

Our results provide some explanation for the large within-industry differences in productivity
observed in developing countries and also suggest that specific knowledge-enhancing investments
can have very high returns. Our approach also provides an example of how detailed data on
production processes can be fruitfully used to better understand TFP changes, which have
typically been treated as residuals in growth-accounting exercises.

Keywords: Total Factor Productivity (TFP), Plant level data, Competitiveness and trade.
JEL Classification: D24, J24, L23, L61, M53.

1 Introduction

Each year, the Indian prime minister announces labor awards to workers employed in government
departments or public sector undertakings. In 2003, the most prestigious of these was awarded
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to a team of 5 from the Rail and Structural Mill of the Bhilai Steel Plant in recognition of their
“outstanding contribution in the field of productivity”.1 The Bhilai Steel Plant (BSP) is one of the
five integrated steel plants of the Steel Authority of India Limited (SAIL), the company that has
dominated the Indian steel sector since it was set up in the 1960s. SAIL is largely state-owned with
86% of equity and voting rights held by the Indian government.2 Until the early nineties strict
licensing rules restricted entry into Indian industry and SAIL, and many other manufacturing
companies, survived with limited changes in technology and negative total factor productivity
growth Schumacher and Sathaye (1998).

The industrial liberalization measures introduced in the early 1990s combined with a fall in world
steel prices resulted in a series of operating losses for SAIL. Between 1992 and 2000 the share of the
private sector in steel production went up from 45 to 68 per cent and the company faced the threat
of its plants being labeled as sick industrial units(Ministry of Steel 1998-2009). Then began a
remarkable revival. Between 1999-2003 SAIL production went up by 12% even though the number
of employees went down by 21%.3. This process has since continued with record profits in 2008,
rising relative share prices and dividends of over 25% for several years.

In this paper we study this revival through the analysis of detailed data from one part of SAIL,
namely the Bhilai Rail and Structural Mill (RSM) in the Bhilai Steel Plant over the period 1999-
2003. The mill has historically been the sole supplier of rails to the Indian Railways and there
exists an informal understanding that this will continue unless the plant at Bhilai fails to provide
adequate rails of appropriate quality. Over the period we consider, the plant’s orders were threat-
ened for several reasons. First, a series of train accidents culminating in a major train wreck in
1998 led to investigations which found sub-standard rails to be a major cause. To lower accident
probabilities, the railways decided to procure longer rails and limit their hydrogen content. It was
initially unclear whether the Bhilai RSM could provide these and for four months ending April
1999 purchases by the railways were interrupted.4 This is why we focus on 2000 onwards below.

1See http://labour.nic.in/award/shram2003.htm and “Bhilai team bags PM’s Shram Ratna for 2003”, SAIL News,

June-August 2003, p.18
2www.sail.co.in
3SAIL Peformance Report, FY 2006 available at www.steel.co.in
4The Hindu Business Line for June 8 , 2000 (Calcutta) reports:

The drop in orders, particularly in 1998-99 and 1999-2000, was because of imports resorted to by the

Railways on the plea that BSP was unable to supply rails as per its specifications. While the Railways

has been a traditional buyer of BSP’s rails with hydrogen content above three ppm (parts per million),

it revised the specification in recent years and sought rails with hydrogen content of less than three

ppm.

The situation forced SAIL to invest over Rs. 100 crores to equip BSP to meet the stringent requirement

of the Railways for rails with less than three ppm hydrogen. Four Rail Quality Improvement Schemes

were completed by BSP in 1999-2000.
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Second, track replacements and an expansion in the network led to an accelerated demand for
rails and it was suggested that private players and imports be allowed to supplement the capacity
at Bhilai. Finally, the industrial liberalization measures had already brought private capital into
mid-sized steel plants and these firms were keen to diversify into larger high-value products with
stable demand. SAIL executives and workers understood that in the absence of significant quantity
and quality improvements, the market share of the company was severely threatened. 5

Of all the SAIL steel plants, labor productivity went up fastest at the Bhilai steel plant over the
period 1999-2003. The production of crude steel per man year went from 121 metric tonnes in 1999-
2000 to 129 in the next fiscal year and 153 in the year ending March 2003.6The output changes in
the Rail and Structural Mill (RSM) far outstripped changes in the rest of the plant. In 1999-2000,
the Indian railways bought a little over 300 thousand metric tonnes of rails from the plant. By
2002-2003, procurement was more than double this amount.7 Although production in the Rail and
Stuctural Mill, like many other parts of the plant, is continuous, and largely automated, it relies
more heavily on labor than in some of the other departments and is therefore well suited to a study
of changes in productivity that rely on worker effort. The Bhilai steel plant is part of a township
created by SAIL with subsidized schools and health facilities and is, in this sense, an island of skilled
and highly paid labor in an otherwise poor state of central India. Both workers and management
are unlikely to find comparable employment were the plant to close. It is therefore understandable
that they had the right incentives to raise productivity when faced with competition. Our purpose
in this paper is to explore the particular methods through which they achieved this productivity
change.

The dataset that guides us in this effort contains detailed information on daily operations at the
Bhilai RSM. The mill operates continuously with 3 production shifts per day. We obtained shift-

5Newspaper reports at the time frequently discussed the breaking of SAIL’s monopoly on rails. The Indian Express

(June 9, 2000) reports:

Purchases from SAIL were stopped for a brief period of four months following the accident in Khanna,

when the quality of rail was questioned by the Railway Safety Committee. However, purchases were

later resumed in April 1999....

Jindal Steel and Power plans to break SAIL’s hold over the huge orders by manufacturing rail for the

domestic market from the next year. The company will manufacture 78 metre long rail, by acquiring

and relocating a rail and structural mill in South Africa, near Raigarh in MP.

(“Railways to procure Rs 400 cr worth rails from Bhilai Steel” by Jyoti Mukul )

6Each year, there is a special audit of major public sector undertakings of the Union government. These produc-

tivity figures are taken from this audit report for 2004 (Comptroller and Auditor General of India 2003-2004).
7Based on administrative data provided to us by the Ministry of Railways
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wise data on the number of steel blooms rolled into rails in each shift, a list of all workers present
during the shift, with their designations, and all delay episodes with their duration and a description
of the cause of the delay. We combine these data on the production process with administrative
data on worker demographics and all episodes of of training. Even though the overall number of
workers did not change much during the three-year period we consider, the combination of workers
on the floor changes from one shift to another: we are able to contol for this variation using worker
fixed effects.

There is now considerable evidence of total factor productivity (TFP) differences across countries
and firms. Hall and Jones (1999) find that of the 35-fold difference in output per worker between the
United States and Niger, TFP differences explain about twice as much as differences in physical
and human capital. Klenow and Hsieh (2009) use plant level data from India and China and
show that the variance across firms within these countries is much larger than in the U.S. and the
rationalization of production could raise output by as much as 50%. A range of institutional and
policy variables could lie behind these TFP patterns, such as access to credit, physical and social
infrastructure, technological spillovers and managerial practices.

A recent “bottom-up” approach in economics and management research tries to uncover particular
sources of productivity change by modeling the production process within particular industries. Our
study is closely related to this work and to a related literature that estimates productivity responses
to greater market competition. Ichniowski et al. (1997) examine the productivity effects of human
resource management practices using monthly data for 36 steel finishing lines across the United
States. They find that workers in plants with traditional employment contracts and hierarchical
supervisory structures are less productive than those in firms with innovative practices and that
some of these productivity gains are realized through increased uptime. Das and Sengupta (2007),
attribute the productivity increases of blast furnaces in Indian steel plants to improved coal quality
and find that additional managers did not contribute to production unless they were also trained.
Bloom and Van Reenen (2007) combine surveys on management practices with TFP estimates from
balance sheet data to examine the influence of such practices on firm productivity. This approach
is in contrast to the traditional one that uses aggregate factors of production like labor and capital
without specifying explicitly what happens inside the firm.

On the effects of competition, Galdon-Sanchez and Schmitz (2005) show that when the market for
steel collapsed in the early 1980s, countries with iron-ore mines that were close to becoming non-
competitive increased efficiency, while others did not. Schmitz (2005) argues this efficiency increase
resulted from less restrictive labor contracts which allowed more flexible allocation of labor time.
Other work on competition and productivity includes Caves and Christensen (1980) , Tybout and
Corbo (1991), Tybout and Westbrook (1991), Nickell (1996), Rodriguez and Rodrik (1999),Trefler
(2004) and Dunne and Schmitz (2009). Syverson (2010) is a recent survey of this field. While we
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do not have data on plants not threatened by closure to compare to those that were, we do have
much finer data on a single plant during events that led to increased competitive pressure. This
allows us to focus on the shop floor for a finer investigation of apparent productivity improvements
than is usually possible.

Our results attribute most of the observed productivity change to efficiency improvements resulting
from fewer preventable delays and less production downtime. These changes in turn are explained
by short and relatively inexpensive bouts of productivity training. Although several programs
of managerial, motivation and technical training were conducted for the mill workers over this
period, the only type of training that appears to have significant causal effects is training targeted
at specifically improving rail quality. An interesting contrast with other studies is that we find
increased uptime in the absence of any systematic changes in the numbers employed.

The rest of the paper is organized as follows. Section 2 provides background on the steel plant and
rail mill at Bhilai. Section 3 describes our data set. Section 4 uses simple growth accounting identi-
ties to decompose output changes into its component parts, namely changes in rates of production,
in delays and in the fraction cobbled (the rails that were visually defective during the process of
rolling before the final cooling process) and explores the patterns in each of these.8 Section 5 ex-
plicitly models the random processes resulting in production delays and Section 6 fits these to the
data. Section 7 develops some counterfactual experiments to help identify the contribution of each
of a number of factors to productivity and Section 8 summarizes the lessons learnt and concludes.

2 The Rail and Structural Mill in the Bhilai Steel Plant

The steel plant at Bhilai covers about 17 square km and and currently employs about 34,000
workers.9 Until the plant was built in the mid 1950s, Bhilai was a small and remote village and
the plant was located there as part of a planning strategy to bring jobs to remote areas. With the
coming of the plant, Bhilai and 96 of its surrounding villages were transformed into a company town
and the former owners of land were compensated in part by being given preference in employment.
The jobs of regular workers are secure, with excellent fringe benefits including schooling, health
care and housing, travel benefits and paid leave. These jobs have always been highly valued. Parry
(1999) in his detailed and entertaining account of labor conditions and performance at Bhilai refers
to workers there as the aristocracy of labor. He notes that although tasks on the plant can be
“extremely demanding, the amount of the working day spent on them is not.” There was, in the
late nineties, a 15-20 percent surplus in manning levels, a strong correlation between seniority and

8Tests to identify defective rails are performed after cooling and so are not in our data.
9Steel Authority of India (2008).
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Table 1: RSM shifts worked by year and product type

Year Rails Structurals

April 1999-March 2000 743 279

April 2000-March 2001 754 258

April 2001-March 2002 839 182

April 2002-March 2003 958 79

Source: BSP Operational Statistics, 2003-2004, Table 9.18

pay and a very weak one between pay and performance.10

In spite of this, the Bhilai plant is widely regarded as the most successful plant in the public
sector and perhaps surprisingly, the structure of incentives led to unequal distribution of work and
absenteeism rather than low average effort. In our own field visits we found groups of extremely
committed workers operating under physical conditions, particularly in the summer when floor
temperatures can exceed 50 degrees centigrade in parts of the plant. In addition, managers seem
to put in long hours and pitch in where needed. Parry noted that although large private industrial
units recruited and organized labor differently, underutilization was pervasive in many of these firms.
Our findings on competition and productivity growth in the state-owned sector may therefore be
applicable more broadly.

The Rail and Structural Mill (RSM) is an integral part of the plant. It was commissioned in 1960
with enough capacity to satisfy domestic demand at that time. Since then, it has been the sole
supplier of rails for Indian Railways. In addition to producing rails, the mill produces a variety
of different products (beams, slabs, channels, angles) that are collectively called structurals and
are either used directly in major infrastructural projects or as intermediate inputs into industries
producing heavy machinery. Each shift at the plant is typically devoted to either rails or structurals,
with a very few shifts that are mixed. These mixed shifts are dropped from the data. Table 1 shows
the total number of shifts during which only rails and only structurals were produced for each of
the four years of our study. Output during a structural shift is both sensitive to product type and
the production process is typically more time consuming than that of rails. We therefore restrict
our study productivity changes in the mill to those shifts that produced rails.11

10(Parry 1999; pp. 17-19) .
11From discussions with the management we gathered that the product mix is not primarily driven by price-cost

margins. As the mill is the sole supplier for Indian Railways, they have a mandate to first meet orders from the

Railways. Structurals are more profitable and their prices have been rising but their production depends on the

capacity remaining after the demand for rails has been met.
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Figure 1: The process for rail production in the RSM

Before describing our data in detail, it is useful to briefly outline the production technology. Figure
1 is a schematic representation of this process. In a nutshell, the the main input is a long rectangular
block of steel call a bloom. These are stored in the bloom yard and pass through different sections
in a sequential process which converts them into rail tracks. They first enter one of four furnaces
where they are heated. They then move through a series of work tables in the mill area where
they are shaped and then pass to the hot saw area where they are cut to ordered lengths, stamped
and moved to a cooling bed. Defective or misshapen blooms are referred to as cobbled and are set
aside, the rest are classified as rolled. The mill runs 24 hours a day 7 days a week with very rare
shutdowns for service and repairs. Production workers are rotated among three 8-hour production
shifts.

Each worker, at any point in time, has a designation based on their job description and their
seniority. Designations can be usefully divided into a few groups. Some workers are restricted to a
particular location in the production process while others are not. In the furnace area, the services
team does the recording of blooms, control men move the blooms in and out of the furnace, while
the furnace maintainace team looks after the furnace. In the mill area, ground staff are on the
floor of the mill ensuring the smooth flow of production. The SCM team, a group of senior control
men and motor operators, along with the coggers sit in pulpits and direct the actual rolling of the
rails in this part of the plant. In the hot saw area we have the saw spell team.

Some groups of workers are not restricted to particular areas of the RSM: for example, crane opera-
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tors man cranes that transport blooms at various stages of production, technicians are responsible
for fixing mechanical problems in the different machines, while the executives oversee the operation
as a whole.

The model of production we estimate in Section 6 uses shift-wise data on the numbers of workers in
each of these categories. There are shift-wise variations in these numbers generated by the number
and types of workers on leave during any particular shift.

Shifts are operated by groups of workers called brigades that remain relatively stable over time.
Each worker, at the time of joining the mill is assigned to one of these brigades. Brigade membership
can be changed based on worker preferences and decisions of the supervisory and executive staff
but these movements are infrequent. There are more people in a brigade than typically work in
a shift, allowing for weekly days off and other types of leave. Brigades are rotated weekly across
shifts: if a brigade works the morning shift in week 1, it is switched to work the afternoon shift for
week 2 and and the night shift for week 3.

3 Our data

We have data on a total of 3558 shifts covering the period January 1, 2000 to March 31, 2003.
There are two types of logs kept by the plant for each shift. The first of these is a delay report
which records of the total input of steel, total output, the share of defective blooms and the length
and cause of each interruption or delay in the production process. The second log is called the
daily presentee report or the dpr and this records worker attendance. Each employee is assigned a
unique identification number or personal number at the time they join the company. For each shift,
and separately for the furnace and mill areas, the dpr lists the personal numbers of all workers on
the floor during that shift. These two shift-level logs form the core of our data set and we describe
them in some detail below.

During active shifts, the delay report allows us to classify all production delays into four classes.
Outside delays, denoted by us as Do, usually occur due to events outside the control of the managers
and workers in the mill. These may be unanticipated, as in the case with gas shortages or electrical
faults, or anticipated but unavoidable as in the case of some regular electricity rationing or an
inadequate supply of rail steel. Finishing delays, Df , result mostly from the cooling bed for finished
rails being full and unable to accept more rails. This is a downstream constraint that can shut
down or slow down production in the mill. Third, there are planned delays, Dp, which are used
for scheduled maintenance or adjustments of equipment. The fourth class of delay is the most
important one for our analysis; it consists of unplanned and avoidable delays, Da that result from
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workers making mistakes. Avoidable delays are generated as the sum of mechanical, operational
and electrical delays that are classified as avoidable. Although a description of the cause for each
delay is available in the data, it is not possible to locate the source of all delays on the process chart
in Figure 1 and we have no reference to the person or group at fault. We argue in the following
sections that reductions in avoidable delays made possible notable productivity improvements at
the RSM during the time period of interest.

The delay report sheet is filled in even if there was no production or no delay during that shift.
For example, if there were inadequate orders, the delay report would record 480 minutes as the
delay time and would list no order as the cause for downtime. There is therefore a delay report
for every shift. We obtained access to paper copies of both delay and attendance logs, though for
a very few shifts these logs were either missing, incomplete or illegible. In addition, data cleaning
led to further attrition. Overall, the usable data covers about 94% of all the shifts in the period.

The attendance log (dpr) provides us with the composition of the workforce for each shift. The
report records the brigade on the floor, lists the workers of the brigade that were present and also
the reasons for the absence of each worker in the brigade but not on the floor. We also have the
designation of each worker by shift and can therefore track workers as they move across brigades,
get hired, fired or promoted. We combine dpr data from administrative records on the social
background of the personnel, including their caste affiliation and home state. Finally, as mentioned
in Section 2, we have records of all episodes of training undertaken by employees of the mill. This
includes a brief description of the training program, start and end dates and a list of employees
trained.

There was an emphasis on training programs at the plant following the dismal performance of the
company in the late nineties. Workers are trained both on the floor of the mill and in programs
organized by the human resource department. Table 2 classifies these programs into nine categories
based roughly on the types of skills that the program targeted.

Although there were a large number of programs, some of them lasted only a couple days and
involved very few employees. On average, the recipients of training were less experienced than
their peers. This is especially noticeable for computer skills, cost reduction, safety and motivational
training. Some training was conducted because it helped in obtaining International Organization
for Standardization (ISO) certification. Most programs did not seem to target any particular
designation; only few of them focused on a narrow workplace-specific skill. For the most part,
training was administered to big groups of workers rather than to individuals. There were four
large programs which together account for two thirds of total training time over our period. These
are listed in Table 3. In Section 6 we examine the role of different types of training on productivity.
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Table 2: Categories of training received, Jan 2000-March 2003

Category Total person days % Days

Motivational 511 27

Productivity 479 26

Environmental 184 10

Quality Control 165 9

Cost Reduction 135 7

Safety 131 7

Computer Skills (IT) 61 3

Job Instruction 57 3

Other 151 8

Total 1874 100

Source: Personnel Records, Rail and Structural Mill

Table 3: The four biggest training programs of RSM employees, Jan 2000-March 2003

Name of program Dates Category % Training time

Acceptance of rails June-July 2001 productivity 22

program

ISO-9000 workshop May 2001, March 2002 quality control 9

ISO-14001 workshop Jan 2002, July 2002 environmental 10

Success through Oct 2002-Jan 2003 motivational 24

empowerment of people

Source: Personnel Records, Rail and Structural Mill

By combining dpr, personnel and training data we can generate shift-wise data on mean worker
characteristics and estimate their effect on productivity. For example, the dates of training and the
list of employees trained allows us to generate training stocks for different types of training for each
employee on each date and we aggregate this by shift to examine the role of variations in training on
total output. Similarly, we have shift-wise compositions of worker designations and backgrounds.
We know the number of executives, coggers, control men, ground staff, etc. on the floor for each
shift, the share of migrant and local workers and their caste composition. Parry (1999) observed
some tension between the local population of Bhilai and migrants from other states. Potentially,
communal conflicts like this may be strong enough to impair cooperation at the workplace and
decrease productivity. We use both caste and home state data to account for this possibility.
These data allows us to control for the composition of labor force at much greater detail than in
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possible in most studies of productivity. Although the overall composition of the workforce in the
mill changed very little over this period, there is considerable variation in mean characteristics by
shift and our strategy exploits this variation.

We have data available for 9 months of 1999 but ignore these because the delays logs during this
period suggest that the mill was intentionally operated below full capacity. There were also several
accounts in the press expressing concern by the railways about high hydrogen content of rails from
Bhilai and reports of downtime in the mill frequently record “no order” as a cause. This problem
was resolved in the following year with the installation of new equipment and orders from the
railways went up again. As seen from the scatter plot in Figure 7, there was a jump in production
at the very end of 1999. Since our focus is on changes in productivity, we feared these might be
overestimated with the inclusion of data from this 1999.12

4 Decomposition of Output Growth.

In this section we perform a simple decomposition of output growth over our period. Output is
determined by the rate at which blooms are rolled and uptime. The latter is defined as the total
shift time less the delay time in each of our categories. We then use the time pattern of output
and delays to attribute output changes to changes in delay times for each of the delay classes. The
main difference between this procedure and commonly observed decompositions is that we rely on
the internal structure of the production process rather than on totals of raw inputs and the output.

Figure 2 summarizes the dynamics of output change. As seen there, average output during rail
shifts expanded from 158 blooms in the first quarter of 2000 to 214 blooms in the first quarter of
2003, a 35% increase.

Proceeding with our decomposition for rail shifts, let Xs denote the total number of steel blooms
12 The Hindu Business Line for June 8 , 2000 (Calcutta) reports:

The drop in orders, particularly in 1998-99 and 1999-2000, was because of imports resorted to by the

Railways on the plea that BSP was unable to supply rails as per its specifications. While the Railways

has been a traditional buyer of BSP’s rails with hydrogen content above three ppm (parts per million),

it revised the specification in recent years and sought rails with hydrogen content of less than three

ppm.

The situation forced SAIL to invest over Rs. 100 crores to equip BSP to meet the stringent requirement

of the Railways for rails with less than three ppm hydrogen. Four Rail Quality Improvement Schemes

were completed by BSP in 1999-2000.
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Figure 2: Blooms rolled for rails and structurals

used by the brigade on duty during a rail shift s. Some proportion, ps, of these blooms is successfully
rolled into rails, while the remaining blooms are cobbled and removed from the line as defective.
The final output is

Ys = psXs

The number of blooms the brigade is able to process is the product of uptime Ts and rolling rate
Rs

13:
Xs = RsTs

Uptime is the total shift time of 480 minutes less time lost because of delays. We denote by Dxs

the delay time resulting from a type x delay in shift s. Uptime is then given by

Ts = 480−Dos −Dps −Dfs −Das

Given uptime and the input of blooms for each shift we infer the processing rate as Xs/Ts and
combine the above equations to obtain:

Ys = psRs(480−Dos −Dps −Dfs −Das) (1)

Using Equation 1, we can attribute output growth in rails to the growth in 6 components: the
fraction defective, ps, the rolling rate Rs, and the duration of the four types delays Dxs.14 By
definition, the percentage change in blooms rolled equals the sum of the percentage change in ps,

Rs, and uptime. The change in uptime can be further decomposed into its component parts:
13Das and Sengupta (2007) refer to R and T , as the rate of output the rate of utilization respectively.
14This is slightly richer than that in the literature. Ichniowski et al. (1997) for example, focus only on the increase

in uptime as the major source of productivity improvements.
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dTs
dt

= −dDos

dt
− dDps

dt
−
dDfs

dt
− dDas

dt

Dividing both sides by dTs
dt , we find attribute changes in uptime to the different types of delays. Re-

sults of this decomposition are shown in the box contained in Table 4. For example, the contribution
of outside delays to growth in total uptime is (46.8−31.9)

183−129 = 276 ≈ .28

Q1 2000 Q1 2003 Growth

p 0.987 0.995 3%

R 0.54 0.614 42%

(480−D) 297 351 55%

Do 46.8 31.9 28%

Dp 90.4 72.5 33%

Df 2.41 2.22 0.35%

Da 43.6 22.7 39%

D 183 129 100%

Y 158 214 100%

Table 4: The decomposition of output growth into delay components.

According to Table 4, finishing downtime and fraction non-defective do not seem to be important
contributors to output growth. The average fraction of defective blooms fell from 1.3% to 0.5% over
the two-year period. While this change is significant the base year value is too low for it to have much
effect on productivity. Outside delays and planned delays are important sources of output growth,
but but are largely exogenous to a output in a particular shift.15 The remaining variables, the rolling
rate R and avoidable delays, Da, are determined on the mill floor and contribute substantially to
the increase in output.

15The way in which workers operate machinery does influence the amount of time needed for its planned main-

tenance. These delays however, are not necessarily related to the composition of workers in the particular shift for

which output is being measured.
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Figure 3: Avoidable delays for rails and structurals

4.1 Delays

A regular shift rarely runs without delays in production. Delays make a considerable part of a work
day; during fiscal years 2001–2003 they accounted for 30% of an average shift time.

4.1.1 Avoidable delays

Most descriptions of avoidable delays contain one of these keywords: “not working”, “tripped”,
“fallen”, “broken”, “jammed”, “grinding”, “adjustment”, “crane down”. The avoidable downtime
decreased by almost a half, from 43 minutes per shift in the first quarter of 2000 to 22 minutes in
the first quarter of 2003 (Figure 3). The second quarter of 2001 had an unusually long shutdown
in production. According to our information, the time when the mill stood idle was used for
training and equipment replacements. A training episode to raise productivity in rails termed the
“acceptance of rails program” occurs at this time.16 The decline in delays that followed may thus
have been caused by either training or equipment replacement. However, it is reasonable to expect,
that the better equipment is likely to get broken less frequently in both rail and structural shifts,
which is not observed in the data (for structurals, the avoidable downtime becomes even higher in
Q4 2001). The training program explicitly focused on raising the output of rails which is consistent
with the observed decrease downtimes during rail shifts, but not structural ones.

16As we argue below, this training episode is the only one that looks like it actually worked.
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Figure 4: Outside delays

4.1.2 Outside Delays

The patterns of outside delays were very different for rail and structural shifts (Figure 4). This
is especially noticeable for year 2000, when RSM faced problems with the supply of low-hydrogen
steel. Since hydrogen content is not as critical for the steel used in heavy structurals, as for rails,
there was less outside downtime during structural shifts.

More than 60% of outside delays were associated with insufficient supply of inputs (keywords “short-
age”, “voltage”, “restriction”) or their bad quality (keywords “lengthy”, “short”, “bad metal”,
“asymmetry”).

4.1.3 Planned Delays

After an initial drop in 2000, planned downtime has been slowly increasing until mid-2002 (Figure
5). We interpret this increase as a natural consequence of higher capital utilization. As output
per shift grows over time, the equipment requires more frequent service. We did not observe any
qualitative difference between rail and structural shifts which is consistent with this interpretation.

The descriptions of delay causes suggest that planned delays were primarily used for regular main-
tenance. More than 90% of planned delays were associated with “checking”, “adjustment” and
“changing” of “section”, “stand” or “hot saw disc”.
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Figure 5: Planned delays

4.1.4 Finishing Delays

Finishing delays were only around 5–6 minutes per shift in 2000–2003 (Figure 6). Consequently,
finishing downtime changes do not contribute much to output growth per se. They serve as a source
of information about downstream bottlenecks that may restrict the productivity of the mill.

Finishing delays occur at the final phase of production – when the rails are coming from the Hot
Saw section to the cooling bed. There is only one cause listed for all finishing delays: “cooling bed
full”. If there is not sufficient space on the cooling bed, the operations at the Rail Mill are halted
until the space becomes available.

4.2 Rolling Rates

Figure 7 plots the rolling rate over time. It includes both heavy structurals and rails.

It is evident from this figure that the rates seem to switch between discrete regimes. The switching
clearly occurs at least three times: on September 15th 1999, November 7th 2000 and September
4th 2002. Within each regime the rates are dispersed around some average level that is stable over
time which makes sense as dispersion will naturally arise in day to day operations.

Before September 1999, the mill had few orders as it was deemed incapable of producing the
required quality. As a result, it was operating far below capacity. It is recorded that one furnace
out of four was running between Sept. 1999 and November 1999, consistent with the low average
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rolling rate in this period.

After this first switch, between September 1999 and November 2000, there is a period where rolling
rates fluctuated from one level to another. In this period the mill had limited access to low hydrogen
steel from outside. There are two ways of reducing the hydrogen content in the rails. One is to use
a degasser to make better steel. The other is to accept steel with a high hydrogen content but to
cool the rail slowly allowing hydrogen to escape (see Rai and Agarwal (2007)). The Bhilai Plant
installed a degasser in early 2000.17 It took six months or so to get consistent operation of this unit
and until October of 2000, it was not fully effective. Note the high level of outside delays around
the first switch (due to the lack of good steel) and high finishing delays afterwards (due to slow
cooling) as depicted in Figure 8.18

After November 2000, the degasser was running consistently and this is reflected in the higher more
stable rate pattern.19 Finally, the regime switch that took place on September 4th 2002 is explained
by the installation of some new equipment. We identify this using delay cause descriptions. On
exactly September 4th a new delay cause started appearing in the data; it is listed as “jamming
at new descaling unit”. This delay occurred nine times in the first three days following the regime

17It is recorded that the degasser was put in for hot trials in March 2000 (Hindu Business Line Newspaper, June

9th 2000.) The Degasser was effective October 1st 2000, as recorded in the controller general report 2003.
18For this reason, the RSM moved its output towards structurals in this period (where the hydrogen content was

less of an issue) as far as possible. When it was forced to make rails, it did so, but could only use the slow cooling

method as good steel was hard to come by. For this reason, before 2000, even when the share of rails was high, the

output of rails was quite low.
19The degasser was installed in early 2000, started being tested in March, but did not function effectively until later

in the year ((Hindu Business Line Newspaper, June 9th 2000, Comptroller and Auditor General of India (2003-2004))
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switching. Gradually, its frequency declined to five occurrences per quarter. Since the increase in
the rolling rate occurred simultaneously with the installation of the new equipment, we conclude
that the former was likely to be caused by the latter.

Overall, it seems fair to say that the long run dynamics of the rolling rate seem to be determined
by technological considerations and the outside constraints operating.

5 A Semi Structural Model of Production

We build a stylized model of the mill in which each bloom goes through a sequence of different
stages before being finished. At each stage in the production process, either events outside the
control of the brigade may occur or workers on the floor may make mistakes. These events and
mistakes result in delays. The duration of delays may depend on the worker characteristics during
the shift. We choose what we believe are reasonable distributions for delay times caused by these
events and then estimate the parameters of these distributions. Finally, we discuss some alternative
modeling approaches and justify the choice of the assumptions made in our model.

Each bloom goes through the following sequence of events and delays. We denote events and
mistakes by Mx and delays by Dx, where x ∈ {o, p, a, f} refers to the type of delay (outside,
planned, avoidable and finishing).

1. A steel bloom is fed into the furnace area for reheating.

2. An outside event may occur at this point. If the event occurs, it triggers an outside delay of
Do minutes. Do is drawn from the distribution Fo(Do|Z) where Z refers to the relevant char-
acteristics of workers on the floor. We therefore assume that while the event is independent
of the workers on the floor, the delay duration does depends on these characteristics because
the events often require intervention by the mill personnel. In the absence of the event, there
is no outside delay. 20

3. Next, workers may make an avoidable mistake causing an avoidable delay of Da minutes before
production is restored. Da is sampled from Fa(Da|Z). In this case both the probability of
the mistake and the delay time depends on Z.

4. To roll the bloom into a final product, it takes time t where t = 1/R and R is the rolling rate.
20For example, flooding in the rainy season requires darainage of the affected area before production can be resumed

and fluctuations in electrical voltage or broken equipment may have to be reported.
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5. When the bloom is rolled, there is some chance of the cooling bed being full, resulting in a
finishing delay of Df minutes drawn from Ff (Df ). This is unlikely to depend on Z, since it
is a downstream delay and mill personnel are not involved in clearing the cooling bed.

6. With probability p the final product is non-defective.

7. With some probability (which varies by quarter) the equipment requires maintenance and Dp

minutes are spent in a planned delay, where Dp is drawn from Fp(Dp|Z).

8. The process is repeated starting from step 1.

For outside, planned and finishing delays, we assume that the events causing the delays are beyond
the control of the mill workers. They occur with some exogenous probability that we allow to vary
by the calendar quarter during which production takes place. Avoidable delays on the other hand
are caused by worker mistakes which are allowed to depend on the composition of workers on the
shift.

In each case, we use a logit model to approximate the process generating the event. For a shift
with worker characteristics Z , the probability of avoidable mistakes is given by

Pa(Z, θ) = Pr(Ma = 1|Z) =
1

1 + e−θaZ

and for all other delay types the probability of events causing the delay in calendar quarter q is

Pr{Mx = 1|q} =
1

1 + e−θx(q)

If a delay occurs, we model the duration of delays that follow by gamma distributions. Each delay
Dx is a drawn from a gamma distribution Γ(αx, λ) where αx = βxZ is the shape parameter and λx
is the scale parameter ( always indepenent of worker characteristics) for x ∈ {o, p, a}. The density
function for delay durations of these three types is therefore

f(Dx|Mx = 1, Z) = DβxZ−1
x

e−Dx/λx

λβxZ
x Γ(βxZ)

, x = a, o, p.

We assume that Ff (Df ) takes a similar gamma form but with the additional restriction that the
shape parameter is not dependent on Z though it is allowed to vary by quarter. Thus

f(Df |Mf = 1, q) = D
βf (q)−1
f

e−Df/λf

λ
βf (q)
f Γ(βf (q))

.
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Recall that the mean of the gamma distribution is given by λβZ, while the variance is λ2βZ. Thus,
our parametrization allows both the mean and the variance of avoidable, outside and planned delays
to depend on who is on the floor. For finishing delays, it allows the mean and variance to vary by
quarter only.

We chose the gamma distribution for its flexibility and as it fits the data quite well. In Figure 5
we compare our fitted gamma distributions with histograms based on the actual data and find the
approximation to be very close. This parameterization also allows for a simple interpretation of
the estimates. Assume the observed delay durations come from the sum of delays caused by each
individual on the floor and that these individually generated delays are independently generated.
Then if the delays of a single worker come from the gamma distribution Γ(αi, λ) where αi is an
individual characteristic of worker i, by gamma-additivity, total delays are distributed as Γ(Σiαi, λ).
Our formulation is therefore consistent with, though not restricted by, a model in which todays
delays are the sum of delays caused by individual workers and individual delays in turn depend on
the characteristics of the worker.21

We estimate the probability of delays of various forms by applying the logit model to the sample
of all rolled blooms. To keep our estimation tractable, we assume that all random processes in
the model (Mx, Dx) are jointly independent conditional on Z. The only permissible correlation
between outside, avoidable and planned delays must therefore go through the brigade on the floor.
This assumption allows avoidable, outside and planned delays to be estimated independently of
each other. We estimate βx and λx independently for avoidable, outside, planned and finishing
delays by applying the method of maximum likelihood to the sub-sample of blooms with positive
delay durations, Dx. It is well known that this likelihood function is concave and so has a unique
maximum. (Choi and Wette 1969).

6 Estimation

We begin by describing the construction of variables that comprise the shift-wise characteristics of
workers Z in our model. These include the number of workers, disaggregated by their designation,
diversity indices based on hometown and caste and training stocks by nine training categories.

21For worker i we define αi as follows: αi = γ1Zi + γ2
Y
N

+ ui where Zi contains worker-specific characteristics

from Z, Y contains common characteristics, and ui is worker i’s fixed effect. Then it is easily seen that
∑
αi =∑

(γ1Zi +γ2
Y
N

+ui) = γ1 [number of workers by designation, training by type]+γ2Y +full set of fixed effects = βZ.

For the model without worker fixed-effects, omit ui from the above derivation. Tables 5 and 6 in the next section

present estimates of the model with and without worker fixed effects.
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The technological process is organized around ten groups of workers. As shown in Figure 1, there
are seven teams of workers. In addition, there are three groups ( Executives, Crane operators and
Technicians) who may appear at any stage of the process. Since different groups perform different
tasks, we treat them as separate types of labor and construct ten labor variables for the shift-wise
numbers in each of these groups.

Worker diversity may affect cooperation among workers within a shift. We use two indices to
capture different dimensions of diversity, home state and caste affiliation. These are constructed as
follows:

local mix = min(slocal, 1− slocal),

caste mix = min(sscst, 1− sscst),

where slocal is the share of shift workers originating from the local area around Bhilai and sscst is
the share of workers from the Scheduled Castes and Scheduled Tribes, the two groups that declared
as disadvantaged by the Indian state and are entitled to affirmative action benefits.

To examine the effects of training, we construct training stocks for the nine categories in Table 2
for each worker on each date. So, for example, the total stock of safety training for worker w at
any date equals the total number of days of such training administered to him by that date. We
aggregate individual stocks for all workers on the attendance sheet for that shift to construct our
nine stocks for every shift.

The model is estimated on the sample of shifts producing only rails during the period January 1,
2000-March 31, 2003. Table 5 presents our results. All estimates are presented as “average marginal
effects”. For example, the effect of productivity training on the probability of an avoidable delay
occurring has a marginal effect of -.33. Recall that our estimates are scaled up by 10,000. This
means that on average, an extra day of this training reduces the probaility of a mistake on a single
bloom by .000033 and with roughly 200 blooms a shift, by .66% a shift.

Column 1 of the table contains logit estimates based on the sample of all 418,819 blooms rolled
over this period. If an avoidable delay occurs during a shift, we set Ma = 1 for the first bloom in
that shift. For each subsequent avoidable delay on that shift, we assign that delay to subsequent
blooms in that same shift. If, say, four avoidable delay episodes occur during that shift, Ma = 1
for the first four blooms of that shift. Given that the worker characteristics are the same for all
blooms rolled in the shift and delays are assumed to be independent, all assignments of delays to
blooms have equal probability and the way in which delays are assigned to particular blooms does
not affect our estimates.

Columns 2-4 contain maximum likelihood estimates based on the gamma distributions described
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above and the number of observations is therefore the number all delay episodes during this period
for each type of delay. The dependent variable is the amount of delay time, in minutes. There are
therefore as many observations per shift as delay episodes of the category that is being explained.

The estimates are consistent with the presence of overstaffing. Note that in column 1 of Table
5 whenever the coefficient on the number of workers on the floor of a given type is significant,
it is positive, indicating a higher probability of a mistake. The estimates on the determinants of
delay durations in columns 2-4 also provide no clear evidence that the mistakes are fixed faster by
larger brigades. Hence, a increase in the quantity of labor hired, all else equal, is unlikely to reduce
downtime and raise output per shift. These results are supported by the anecdotal evidence on
overstaffing at the BSP given in Parry (1999).

Some types of training do seem to reduce avoidable mistakes as seen by the negative coefficients on
environmental, motivational and productivity training. However we show below that of these, only
productivity training seems to be robust to changes in model specification. We also find no evidence
that caste diversity impairs productivity; if anything, workers in shifts that are heterogeneous in
terms of caste seem to make fewer mistakes.

Total labor variables alone might not be able to capture all the relevant dynamics in workforce
composition. When using aggregate numbers for different designations and training stocks, we
implicitly assume that replacing one worker with another will not change the outcome as long
as the workers’ training stocks, etc., are the same. If this is not the case, our estimates may be
subject to the omitted variable bias. To check the robustness of the estimates in 5, we augment Z
by individual worker dummies and reestimate these equations.

The estimates presented in Table 6 confirm our main result: productivity training significantly
reduces downtime. In addition motivational training seems to reduce the average time spent in
planned delays. The coefficient of job instruction training is now positive. This could be because
job instruction occurs when new workers are hired or promoted. To check for this, we controlled
for time in the job by putting in a novice dummy for those on the job less than six months (these
estimates are available on request), but this had no effect on estimates. Caste diversity is no longer
significant. Thus, the only robust result is that productivity training helps.

To quantify and better illustrate the total effect of such training on output, we perform a a set of
counterfactual simulations in the following section where the stocks of such training and other pos-
sibly relevant explanatory variables are varied and the dynamics of simulated output are compared
with observed output.
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Table 5: Estimates of downtime components

Dependent variable Ma Da Do Dp

Worker Teams (# workers)

Control Men 1.91† -1.90 -9.65 4.77

Coggers -0.86 -2.53 12.3 3.99

Crane Operators -0.19 2.55 35.6∗ -2.27

Executives -3.63 -4.87 9.19 -12.8

Furnance Maintenance -0.32 -1.31 -21 -1.63

Ground Staff 1.23† 3.31† 5.82 -0.31

Senior Control Men 1.76∗ -4.31† -11.3 -1.12

Services 2.17† 0.22 -10.1 -0.99

Saw Spell 0.45 -1.06 -9.16 0.21

Technicians 5.67∗∗ -2.13 8.33 8.05

Training stocks (days)

Cost Reduction 0.34 -0.04 -3.12 0.18

Environmental -0.53∗∗ 0.06 -0.73 -0.72

IT 0.18 -1.20 3.03 0.29

Job Instruction -0.27 1.30 0.73 1.75

Motivational -0.12∗ 0.17 0.70 -0.12

Productivity -0.33∗∗ -0.13 -1.07† -0.08

Quality Control -0.08 -0.15 -2.04 -0.17

Safety -0.05 0.86 11.9∗∗ 0.89

Other -0.33 -1.08 -0.14 0.79

Caste mix -146∗∗ -108 -261 -185

Local mix 23 -75 -367 156

Observations 418,819 3,366 1,788 5,219

Significance levels : †: 10% ∗ : 5% ∗∗ : 1%
Column 1 reports average marginal effects on Pr{Ma = 1}, scaled up by 10,000
Columns 2-4 report marginal effects on delay durations, scaled up by 10
Unlisted control variables: brigade dummies
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Table 6: Estimates of downtime components (with worker dummies)

Dependent variable Ma Da Do Dp

Worker Teams (# workers)

Control Men 29.2 -3.15 -83.3 12.9

Coggers 20.4 -3.59 17 12.5

Crane Operators -21.7 52.2 58.1 12.1

Executives -1.25 4.73 -11.5 -22.5

Furnance Maintenance 17.4 -23 -193 38.5

Ground Staff 15.5 18.4 -123 14.5

Senior Control Men 28 -1.80 -127 8.74

Services 26.5 27.1 -96 21.6

Saw Spell 14.1 25.2 -132 3.09

Technicians -8.75 -15.9 201 -46.4

Training stocks (days)

Cost Reduction -0.67 2.11 4.18 -2.85

Environmental -0.04 -0.75 -0.75 -0.95

IT -0.32 0.26 21.5 2.62

Job Instruction 4.76∗∗ 4.63 -29.6 5.63

Motivational 0.07 -0.21 0.48 -0.60∗

Productivity -0.41∗∗ -0.43 -1.88 -0.09

Quality Control -0.22 -0.99 -1.64 -0.47

Safety 0.32 2.88 9.99 0.30

Other -0.33 0.45 -3.83 1.07

Caste mix -427 -926 -2638 34.1

Local mix 11.2 -50 474 118

The number of observations are the same as in Table 5.
Significance levels : †: 10% ∗ : 5% ∗∗ : 1%
Column 1 reports average marginal effects on Pr{Ma = 1}, scaled up by 10,000
Columns 2-4 report marginal effects on delay durations, scaled up by 10
Unlisted control variables: individual worker dummies
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7 Counterfactual Experiments

In this section we use the estimates from the above section to study the impact of counterfactual
changes in labor, diversity and the stock of training on the overall output. To avoid omitted variable
bias, we restrict ourselves to the model with individual fixed effects and use the estimates from
Table 6.

We simulate production bloom by bloom, following the multistep procedure outlined in Section 5.
In each of our counterfactual experiments, the set of brigade characteristics is split in two parts:
Z = [Z1, Z2]. The first part contains variables that we freeze at the level of quarter 1, 2000 in the
simulation. The second consists of characteristics that are allowed to change over time as observed
in the data. This way, we predict the time path of output that would occur, had the management
chosen not to adjust the variables in Z1. By varying the composition of Z1 and Z2 from one
simulation to the next, we sequentially examine the importance of different sets of explanatory
variables.

Each bloom that enters the mill takes time 1/R to be processed if no mistakes or delays occur. If
the model generates the event that a draw from a delay distribution is warranted, then the delay
drawn is added to this time. Many delays may occur and these are additively incorporated. There
is a probability, which varies by calendar quarter, that the bloom may be cobbled, in which case
the simulation will throw this bloom out. This continues until the 480 minutes of the shift are
over. At the end of each shift, the total blooms rolled are generated. We take the monthly output
generated by the simulation and label this to be the simulated output.

We start with simulating a full model in which Z2 contains all the covariates and Z1 is empty. We
then shrink the list of variables in Z2 in stages and observe the response of simulated output. The
results of these experiments are depicted in Figure 7.

Panel (a) shows that the full model fits the monthly output data very well. Recall from Section 5
that so as not to over parametrize the model, we only allow for quarterly changes in the probabilities
of outside, planned and finishing delays. As a result, if outside delays, for example, are frequent in
a particular week or month, the model will not take this into account and will tend to overestimate
output for that month. This is why the model does not track the data spike by spike, but it does
track it well on average.

In panel (b), we assume that the diversity indices are kept at their average level in the first quarter
of 2000. By comparing simulated output here with that in panel (a), we see that this restriction
does very little to estimated output: therefore we can say that the effect of changing diversity is
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(a) Full model: Z2 = Z (b) Freeze diversity
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(c) Freeze diversity, labor and worker dummies (d) Freeze all covariates, except productivity training
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(e) Freeze all covariates: Z2 = []
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Figure 10: Diversity, labor and training, and their overall effects on output
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very small.

In the next panel, we impose restrictions on an additional set of variables: the total labor in each
team and all worker dummies. This does not allow the management to control the composition of
the workforce at all. The fluctuations in output are now driven only by training stocks and the
quarterly dummies. This causes a model to slightly underpredict output starting early 2002. Since
these predictions are not systematically outside the confidence bands, we can say that changes in
these labor related variables were not the primary determinants of output growth. In the RSM,
total labor used did not change by much in this period and none of these coefficients is significant
so it is not not surprising that the change that did occur has little impact.

Panel (d) shows what output would be produced if no changes in diversity or labor composition
were allowed and only the “productivity” training was administered to the workers. This way, we
shut down the effects of all training that does not belong to the productivity category. Although
the latter is the only covariate not frozen in time, the model still fits the data quite well suggesting
that this other training was pretty useless. There is an over-prediction in the first and second
quarter of 2001 in panel (d), but the fit is good in later periods.

Finally, in panel (e) we fix all covariates at their level of their average value in the first quarter
of 2001. The predicted time path of output is driven by the outside factors only, such as outside
mistakes and variations in the processing rate. We now see a large discrepancy between prediction
and the actual data. The last two panels suggest that productivity training was crucial in increasing
output. Had management done nothing to train the employees, the growth in output would have
been much more modest. The gap between simulated and actual output starts in the summer of
2001, which is precisely when the largest productivity training program took place (see Table 3).

8 Conclusions

We attempt to explain output growth in state-owned industry based on a proprietary dataset that
documents floor-level operations at Bhilai Rail and Structural Mill, a unit of Steel Authority of
India. During the three year period we consider, output increased by about a third in response to
external pressures. Changes if the rolling account for 42% of this, while a fall in delay episodes and
durations accounts for about 55%. Delays that are classified as avoidable by management in turn
account for 39% of the time saved by fewer and shorter delays.

We then present and estimate a simple model of production that goes beyond the traditional
production function approach and exploits the structure of the technological process. Our estimated
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model allows us to turn on and off various channels through which production could have increased.
By conducting such counterfactual experiments, we show, for example, that most of the growth in
production that came from reductions in avoidable delays occurred due to a single training episode
during which workers were trained on raising rail quality.22

We see the contribution of this paper as both methodological and empirical. The model that we
propose is not specific to the steel industry. It may be applied to any production unit involved in a
processing task of an arbitrary nature. Since many manufacturing firms are organized around tasks
in established technological chains, our approach is most likely to be useful in the manufacturing
sector.

By considering a firm in which aggregate labor adjustments were not possible, we highlight the
role of other margins of productivity improvements, namely training and, to use Leibenstein’s
phrase, the existence of X-efficiency which made these changes possible.23 The phase following
industrial liberalization in India has seen a great diversity of experience with state-owned industry.
While some industries, such as the state-owned airlines, have found it difficult to compete with
private entrants, others like steel, heavy industry, telephone companies and state-owned banks
have survived and, in some cases, increased their market share in response to competition.

The co-existence of state and private ownership within narrowly defined industries is intriguing
given the differences in managerial practices, labor tenure systems and wage structures observed
across the two forms of ownership. The changes we observed in Bhilai did not occur until workers
perceived their jobs under threat. It may well be that the combination of job security and high wages
that were associated with low productivity before industrial liberalization created the potential for
the dramatic response that followed it.
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