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Abstract 

 
This paper develops vector autoregressive and Bayesian vector autoregressive models to 
forecast the Indian Re/US dollar exchange rate which is governed by a managed floating 
exchange rate regime. It considers extensions of the monetary model that include the 
forward premium, capital inflows, volatility of capital flows, order flows and central bank 
intervention. The study finds that the monetary model generally outperforms the naïve 
model. It also finds that forecast accuracy can be improved by extending the monetary 
model to include forward premium, volatility of capital inflows and order flow. 
Information on intervention by the central bank also helps to improve forecasts at the 
longer end. The study also reports that the Bayesian vector autoregressive models generally 
outperform their corresponding VAR variants. 
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1. Introduction 
 
 The exchange rate is a key financial variable that affects decisions made by foreign 

exchange investors, exporters, importers, bankers, businesses, financial institutions, 

policymakers and tourists in the developed as well as developing world. Exchange rate 

fluctuations affect the value of international investment portfolios, competitiveness of exports 

and imports, value of international reserves, currency value of debt payments, and the cost to 

tourists in terms of the value of their currency. Movements in exchange rates thus have 

important implications for the economy’s business cycle, trade and capital flows and are 

therefore crucial to understanding financial developments and changes in economic policy. 

Timely forecasts of exchange rates can therefore provide valuable information to decision 

makers and participants in the spheres of international finance, trade and policy making.  

Nevertheless, the empirical literature is skeptical about the possibility of accurately predicting 

exchange rates.  The seminal paper by Meese and Rogoff (1983) showed that models based on 

economic fundamentals are unable to outperform a naïve random walk. Empirical research 

undertaken since then provides mixed evidence on the success of economic models to predict 

exchange rates.     

 This study is yet another attempt to gauge the forecasting ability of economic models 

with respect to exchange rates with the difference that this is done in the context of a developing 

country that follows a managed floating (as opposed to flexible) exchange rate regime. Starting 

from the naïve model, this paper examines the forecasting performance of the monetary model 

and various extensions of it in the vector autoregressive (VAR) and Bayesian vector 

autoregressive (BVAR) framework. The focus is on the exchange rate of India vis-à-vis the US 

dollar, i.e., the Re/$ rate.  

 India has been operating on a managed flexible exchange rate regime from March 1993, 

making the start of an era of a market determined exchange rate regime of the rupee with 

provision for timely intervention by the central bank. Prior to that, up to 1990, the exchange rate 

regime was an adjustable nominal peg to a basket of currencies of major trading partners with 

a band. In the early 1990s, India was faced with a severe balance of payment crisis due to the 

significant rise in oil prices, the suspension of remittances from the Gulf region and several 

other exogenous developments. Amongst the several measures taken to tide over the crisis 

was a devaluation of the rupee in July 1991 to maintain the competitiveness of Indian 

exports. This initiated the move towards greater exchange rate flexibility. After a transitional 

11-month period of dual exchange rates, a market determined exchange rate was established 
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in March 1993. The current exchange rate policy relies on the underlying demand and supply 

factors to determine the exchange rate with continuous monitoring and management by the 

central bank. 

 This study thus concentrates on the post March 1993 period and provides insights into 

forecasting exchange rates for developing countries where the central bank intervenes 

periodically in the foreign exchange market. The alternative forecasting models are estimated 

using monthly data from July 1996 2

 

 to December 2006 while out-of-sample forecasting 

performance is evaluated from January 2007 to June 2008.  

 Extensions of the monetary model considered in this paper include the forward premium, 

capital inflows, volatility of capital flows, order flows and central bank intervention. The study 

therefore examines, first, whether the monetary model can beat a random walk. Second, it 

investigates if the forecasting performance of the monetary model can be improved by extending 

it. Third, the paper evaluates the forecasting performance of a VAR model vs a BVAR model. 

Lastly, it considers if information on intervention by the central bank can improve forecast 

accuracy.  

 The following section briefly describes economic theories and reviews the empirical 

literature. Section 3 describes the econometric methodology and Section 4 gives the empirical 

results. Section 5 concludes.   

2. Economic Theory and Review of Literature 

 In the international finance literature, various theoretical models are available to analyze 

exchange rate determination and behaviour. Most of the studies on exchange rate models prior to 

the 1970s were based on the fixed price assumption3

                                                 
2 The starting period is based on availability of data for all series.   
3 See e.g. Marshall (1923), Lerner (1936), Nurkse (1944),  Mundell (1961, 1962, 1963) and Fleming (1962).  

. With the advent of the floating exchange 

rate regime amongst major industrialized countries in the early 1970s, an important advance was 

made with the development of the monetary approach to exchange rate determination.  The 

dominant model was the flexible-price monetary model that has been analyzed in many early 

studies like Frenkel (1976), Mussa (1976, 1979), Frenkel and Johnson (1978), and more recently 

by Vitek (2005), Nwafor (2006), Molodtsova and Papell, (2007). Following this, the sticky 

price or overshooting model by Dornbusch (1976, 1980) evolved, which has been tested, 

amongst others, by Alquist and Chinn (2008) and Zita and Gupta (2007). The portfolio balance 
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model also developed alongside4, which allowed for imperfect substitutability between domestic 

and foreign assets, and considered wealth effects of current account imbalances.  

           With liberalization and development of foreign exchange and assets markets, variables 

such as capital flows, volatility in capital flows and forward premium have also became 

important in determining exchange rates. Furthermore, with the growing development of foreign 

exchange markets and a rise in the trading volume in these markets, the micro level dynamics in 

foreign exchange markets increasingly became important in determining exchange rates. Agents 

in the foreign exchange market have access to private information about fundamentals or 

liquidity, which is reflected in the buying/selling transactions they undertake, that are termed as 

order flows (Medeiros 2005, Bjonnes and Rime 2003). Microstructure theory evolved in order to 

capture the micro level dynamics in the foreign exchange market (Evans and Lyons, 2001, 

2007). Another variable that is important in determining exchange rates is central bank 

intervention in the foreign exchange market.   

           Nevertheless, despite the use of a variety of models over the last half a decade or so, 

forecasting the exchange rates has remained a challenge for both academicians as well as 

market participants. In fact, Meese and Rogoff’s seminal study (1983) on the forecasting 

performance of the monetary models demonstrated that these failed to beat the random walk 

model. This has triggered a plethora of studies that test the superiority of theoretical and 

empirical models of exchange rate determination vis-a-vis a random walk. An extensive survey 

of literature on theoretical and empirical findings is available in Dornbusch (1990), Frankel 

and Rose (1995), Taylor (1995), Cuthbertson (1996), Sarno and Taylor (2002), Gandolfo 

(2006) and Schmidt (2006).  

 Against this backdrop, various models of exchange rate determination are examined 

to derive the relevant macroeconomic fundamentals affecting exchange rates.  

Exchange Rate Models: Theoretical Considerations 

The earliest and simplest model of exchange rate determination, known as the 

purchasing power parity (PPP) theory, represented the application of ‘‘the law of one 

price’’. This states that arbitrage forces will lead to the equalization of goods prices 

internationally once the prices are measured in the same currency. PPP theory provided a 

point of reference for the long-run exchange rate in many of the modern exchange rate 

theories. It was observed initially that there were deviations from PPP in short-run, but in the 

Purchasing power parity, monetary and portfolio balance models 

                                                 
4 See e.g. Dornbusch and Fischer (1980), Isard (1980), Branson (1983, 1984). 
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long-run, PPP holds in equilibrium. However, many of the recent studies like Jacobson, 

Lyhagen, Larsson and Nessen (2002) find deviations from PPP even in the long-run. Reasons 

for the failure of PPP have been attributed to heterogeneity in the baskets of goods considered 

for construction of price indices in various countries, presence of transportation cost, 

imperfect competition in goods market, and increase in the volume of global capital flows 

during the last few decades which led to sharp deviation from PPP. 

The failure of PPP models gave way to monetary models which took into account the 

possibility of capital/bond market arbitrage apart from goods market arbitrage assumed in the 

PPP theory. In the monetary models, it is the money supply in relation to money demand in 

both home and foreign country, which determine the exchange rate. The prominent monetary 

models include the flexible and sticky-price monetary models of exchange rates as well as the 

real interest differential model and Hooper-Morton’s extension of the sticky-price model. In this 

class of asset market models, domestic and foreign bonds are assumed to be perfect substitutes.  

 The flexible-price monetary model (Frenkel, 1976) assumes that prices are perfectly 

flexible. Consequently, changes in the nominal interest rate reflect changes in the expected 

inflation rate.  A relative increase in the domestic interest rate compared to the foreign interest 

rate implies that the domestic currency is expected to depreciate through the effect of inflation 

which causes the demand for the domestic currency to fall relative to the foreign currency.  In 

addition to flexible prices, the model also assumes uncovered interest parity, continuous 

purchasing power parity and the existence of stable money demand functions for the domestic 

and foreign economies.  

 The model further implies that an increase in the domestic money supply relative to the 

foreign money supply would lead to a rise in domestic prices and depreciation of the domestic 

currency to maintain PPP. Further, an increase in domestic output would lead to an appreciation 

of the domestic currency since an increase in real income creates an excess demand for domestic 

money supply. This, in turn, causes a reduction in aggregate demand as agents try to increase 

their real money balances leading to a fall in prices until money market equilibrium is restored.   

 In the sticky-price monetary model (due originally to Dornbusch, 1976), changes in the 

nominal interest rate reflect changes in the tightness of monetary policy. When the domestic 

interest rate rises relative to the foreign rate, it is because there has been a contraction in the 

domestic money supply relative to the domestic money demand without a matching fall in 

prices. The higher interest rate at home attracts a capital inflow, which causes the domestic 

currency to appreciate. This model retains the assumption of stability of the money demand 
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function and uncovered interest parity but replaces instantaneous purchasing power parity with a 

long-run version. 

 Since PPP holds only in the long-run, an increase in the money supply does not 

depreciate the exchange rate proportionately in the short-run.  In the short-run, because of sticky 

prices, a monetary expansion leads to a fall in interest rates resulting in a capital outflow. This 

causes the exchange rate to depreciate instantaneously and overshoot its equilibrium level to 

give rise to an anticipation of appreciation in order to satisfy the uncovered interest parity 

condition. The above analysis assumes full employment so that real output is fixed. If instead, 

output responds to aggregate demand, the exchange rate and interest rate changes will be 

dampened. 

 Frankel (1979) argued that a drawback of the Dornbusch (1976) formulation of the 

sticky-price monetary model was that it did not allow a role for differences in secular rates of 

inflation. He develops a model that emphasizes the role of expectation and rapid adjustment in 

capital markets. The innovation is that it combines the assumption of sticky prices with that of 

flexible prices with the assumption that there are secular rates of inflation. This yields the real 

interest differential model.  

 Hooper and Morton (1982) extend the sticky price formulation by incorporating changes 

in the long-run real exchange rate. The change in the long-run exchange rate is assumed to be 

correlated with unanticipated shocks to the trade balance. They therefore introduce the trade 

balance in the exchange rate determination equation. A domestic (foreign) trade balance surplus 

(deficit) indicates an appreciation of the exchange rate.  

 The four models can be derived from the following equation specified in logs with 

starred variables denoting foreign counterparts: 

 

                       et = γ + δ(mt-mt*) + φ(yt-yt*) + α(it-it*) + β(πt-πt*) + η(tbt-tbt*) + µt 

 

where e = price of foreign currency in domestic currency  
          m = money supply 
          y  = real output 
          i  = nominal interest rate 
          π = inflation 
         TB = trade balance   
 
The alternative testable hypotheses are as follows: 

Flexible-price model:   δ>0, α>0, φ<0, β=η=0 
Sticky price model:   δ>0, α<0, φ<0, β=η=0 
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Real interest differential model: δ>0, α<0, φ<0, β>0, η=0 
Hooper-Morton model:   δ>0, α<0, φ<0, β>0, η<0 
 
These models can be further extended to incorporate portfolio choice between domestic and 

foreign assets. The portfolio balance model assumes imperfect substitutability between 

domestic and foreign assets. It is a dynamic model of exchange rate determination that allows 

for the interaction between the exchange rate, current account and the level of wealth. For 

instance, an increase in the money supply is expected to lead to a rise in domestic prices. The 

change in prices, in turn, can affect net exports and thus imply changes in the current account of 

the balance of payments. This, in turn, affects the level of wealth (via changes in the capital 

account) and consequently, asset market and exchange rate behaviour. Under freely floating 

exchange rates, a current account deficit (surplus) is compensated by accommodating 

transactions in the capital account i.e. capital account surplus (deficit). This has implications for 

the demand and supply of currency in the foreign exchange market, which can lead to 

appreciation (depreciation) of the exchange rate. Thus the coefficient of the current account 

differential in the exchange rate model is hypothesized to have a positive sign. 

The portfolio approach thus introduces current account in the exchange rate equation. The 

theoretical model can be expressed as a hybrid model as follows: 

 

et = γ + δ(mt-mt*) + φ(yt-yt*) + α(it-it*) + β(πt-πt*) + η(tbt-tbt*) + θ(cat-cat*) + µt 

 

where CA denotes current account balance and θ > 0 

 

           With an increase in liberalization and opening up of capital accounts the world over, 

capital flows have become important in determining exchange rate behaviour. The relation 

between capital flows and exchange rates is hypothesized to be negative (with the exchange 

rate defined as the price of foreign currency in domestic currency). This is because capital 

inflow implies purchase of domestic assets by foreigners and capital outflow as purchase of 

foreign assets by residents. Since the exchange rate is determined by the supply and demand 

for foreign and domestic assets, the purchase of foreign assets drives up the price of foreign 

currency. Likewise, the purchase of domestic assets drives up the price of domestic currency. 

Thus, an increase in capital inflows leads to appreciation of the domestic currency when there 

is no government intervention in the foreign exchange market or if there is persistent 

Capital flows, forward premium  
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sterilized intervention. In the case of unsterilized government intervention, the potential of 

capital inflows to influence exchange rates decreases to a great extent.  

         Dua and Sen (2009) develop a model which examines the relationship between the real 

exchange rate, level of capital flows, volatility of the flows, fiscal and monetary policy 

indicators and the current account surplus, and find that an increase in capital inflows and 

their volatility lead to an appreciation of the exchange rate. The theoretical sign on volatility 

can, however, be positive or negative. 

 The forward premium measured by the difference between the forward and spot 

exchange rate can provide useful information about future exchange rates. According to 

covered interest parity, the interest differential between two countries equals the premium on 

forward contracts.  Thus, if domestic interest rates rise, the forward premium on the foreign 

currency will rise and the foreign currency is expected to appreciate. The exchange rate 

defined as the price of foreign currency in domestic currency and the forward premium are 

therefore expected to be positively related. 

               

 Order flow is the cumulative flow of transactions, signed positively or negatively 

depending on whether the initiator of the transaction is buying or selling. Order flow takes 

positive values if the agent purchases foreign currency from the dealer and takes negative 

values if it sells at the dealer’s bid. Conventionally, order flow is taken as purchase minus 

sales of foreign currency. Hence an increase in order flow (i.e. an increase in the volume of 

positively signed transactions) will generate forces in the foreign exchange market such that 

there is pressure on the domestic exchange rate to depreciate.  Hence the order flow and the 

Microstructure Framework 

 The microstructure theory of exchange rates provides an alternative view to the 

determination of exchange rates. Unlike macroeconomic models that are based on public 

information, micro-based models suggest that some agents may have access to private 

information about fundamentals or liquidity that can be exploited in the short-run.  In 

microeconomic models of asset prices, transactions play a causal role in price determination 

(Evans and Lyons, 2001, 2007). The causal role arises because transactions convey information 

that is not common knowledge. These models assume that information is dispersed and 

heterogeneous agents have different information sets. The trading process in foreign exchange 

markets is not transparent and features bid-ask spreads that reflect the costs to market makers / 

dealers of processing orders and managing inventories. Thus, a distinctive feature of the 

microstructure models is the central role played by transactions volume or order flows in 

determining nominal exchange rate changes (Medeiros 2005, Bjonnes and Rime 2003).  
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exchange rate are positively related. The explanatory power or information content of order 

flow depends on the factors that cause it. Order flow is most informative when it is caused due 

to dispersion of private information amongst agents with respect to macroeconomic 

fundamentals (Lyons 2005). Order flow is less informative when it is caused due to management 

of inventories by the foreign exchange dealers in response to liquidity shocks.   

Intervention    

 Intervention by the central bank in the foreign exchange market also plays an 

important role in influencing exchange rates in countries that have managed floating regime. 

With the growing importance of capital flows in determining exchange rate movements in 

most emerging market economies, intervention in foreign exchange markets by central banks 

has become necessary from time to time to contain volatility in foreign exchange markets.   

             The motive of central bank intervention may be to align the current movement of 

exchange rates with the long-run equilibrium value of exchange rates; to maintain export 

competitiveness; to reduce volatility and to protect the currency from speculative attacks. 

Many studies in the literature including Edison (1993), Dominguez and Frankel (1993), 

Almenkinders (1995) and more recently Sarno and Taylor (2001), Neely (2005) survey the 

literature on modelling the reaction function of the central bank and assessing the 

effectiveness of intervention. 

            The impact of sterilised and unsterilised intervention on exchange rates can, however, 

be quite different. In case of non-sterilised intervention, say, purchase of foreign exchange (to 

prevent appreciation) not accompanied by contractionary open market operations, money 

supply increases, which reduces the rate of interest and increases demand. This leads to 

capital outflow on the one hand and an increase in import demand on the other. All this leads 

to an increase in the demand for foreign currency and hence the exchange rate depreciates. 

Thus non-sterilised intervention and exchange rates are positively related. 

 While non-sterilised intervention directly influences the exchange rate through the 

monetary channel, sterilised intervention also influences exchange rate through different 

channels -- by changing the portfolio balance, through the signaling channel where sterilised 

purchase of foreign currency will lead to a depreciation of the exchange rate if the foreign 

currency purchase is assumed to signal a more expansionary domestic monetary policy and 

more recently, the noise-trading channel, according to which, a central bank can use sterilised 

interventions to induce noise traders to buy or sell currency. Hence the overall effect of 

sterilised intervention on exchange rates is ambiguous. 
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        Recognizing the importance of both monetary models as well as micro structure theory in 

determining the exchange rates, the paper uses a combination of both the models. Exchange rate 

is determined by monetary variables as well as order flows. Theory has been further expanded to 

include forward premia, capital inflows, volatility of capital flows and central bank intervention 

as determining the exchange rate behaviour. The theoretical model so generated can be 

expressed as follows:  

et = γ + δ(mt-mt*) + φ(yt-yt*) + α(it-it*) + β(πt-πt*) + η(tbt-tbt*) + θ(cat-cat*) + νcapt +  

 ρvolt + ωfdpmt + ψoft + ξ intt +  µt  

where  capt = capital inflow 
 volt = volatility of capital flows 
 fdpmt = 3-month forward premia 
 oft  = order flow 
 intt = central bank intervention  

 

The additional signs are as follows: θ>0; ν<0; ρ>or<0; ω>0; ψ>or<0; and ξ>or<0. 

The expected signs can be summarized as follows: 

Expected Signs of Independent Variables 
Dependent Variable: et  

(price of foreign currency in terms of domestic currency) 
 

Variables Expected Sign 
         it-it* +/- 

yt-yt
* - 

mt-mt
* + 

πt-πt
* + 

tb-tb* - 
ca-ca* + 
fdpmt + 

capflowt - 
volt +/- 
oft +/- 
intt +/- 

 

 Exchange Rate Models: Empirical Results 

            The previous section discusses sequentially the theoretical models that potentially 

determine exchange rate behaviour. The empirical performance of these theoretical models in 

forecasting and explaining exchange rate behaviour is crucial in determining the superiority 

of one theory over the other. A caveat, of course, is that if a theory can explain the behaviour 

of the exchange rate better than others, it does not necessarily imply that it can also forecast 

exchange rates with relatively greater accuracy, and vice versa. 
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 Examination of the empirical literature suggests that there is no consensus among 

economists on the appropriate monetary model that explains exchange rates well. It is also 

observed that the in-sample predictive performance of monetary models was good in the 

years following the breakdown of the Bretton Woods system (see e.g. Bilson 1978, Frankel 

1979), but their performance collapsed in the 1980s.  

   Meese and Rogoff (1983) examined the out-of-sample predictive performance of the 

monetary models vis-à-vis the simple random-walk model. They observed that the forecasts 

using models based on economic fundamentals were in all cases worse than a random walk 

model. Meese (1990) attributed the failure of monetary models to weaknesses in their 

underlying relationships such as the PPP condition, the instability found in money demand 

functions and expectations that agents’ forecasts do not obey the axioms of rational expectations.  

        Studies by MacDonald and Taylor (1991, 1993, 1994), Choudhry and Lawler (1997), 

Diamandis, Georgoutsos and Kouretas (1998), Mark and Sul (2001) attribute monetary 

models to be long-run equilibrium phenomena. Empirical literature (eg: Chinn and Meese 

1995, Taylor 1995, Neely and Sarno 2002, Sarno and Taylor 2002) suggests that over short 

horizons of one to three years, monetary fundamentals generally do not predict changes in the 

spot rate. However, over longer horizons of four to five years, fundamentals do provide some 

predictive power for some currencies (Kim and Mo 1994, Mark 1995, Chinn and Meese 

1995).  

            Some of the recent empirical studies on the monetary model performance have also 

exhibited mixed results. Studies have shown that inclusion of exchange rate expectations and 

the degree of openness in the Dornbusch sticky price monetary model improves forecast 

ability of the monetary model (Zita and Gupta, 2007).  

 For the portfolio balance model (PBM) of exchange rate determination, not much 

empirical literature is available because of data limitations, which restricts the empirical 

application of the portfolio balance model. The earlier studies that estimated the log-linear 

version of the reduced form portfolio balance model such as Branson, Halttunen and Masson 

(1977), Bisignano and Hoover (1982) and Dooley and Isard (1982) find dismal performance of 

the portfolio balance model in explaining exchange rate behaviour. Studies by Frankel (1982a, 

b) and Rogoff (1984) did not find any support in favour of the model. On the other hand, some 

empirical support for the portfolio balance model is provided by Backus (1984), Lewis (1988) 

and Dominguez and Frankel (1993).  

Regarding capital flows, Dua and Sen (2009) find that an increase in both net capital 

inflows and their volatility lead to an appreciation of the exchange rate, and that they jointly 
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explain a large part of the variations in exchange rate in the Indian economy. Kohli (2001) 

analyses the effect of capital flows in the Indian context and finds that inflow of foreign 

capital results in a real appreciation of the exchange rate. Calvo, Leiderman and Reinhart 

(1993) and Edwards (1999a), analyze the impact of capital flows on the exchange rate for 

Latin American and Asian countries and find that an increase in capital flows cause the 

exchange rate to appreciate. However, the degree of appreciation or the strength of the 

relation between capital flows and exchange rate may vary across countries and time.   

         With respect to forward premia, Della Corte, Sarno and Tsiakas, (2007) examine the 

predictive ability of exchange rate models based on lagged values of the forward premium 

and other macroeconomic variables, as compared to the random walk model. The study finds 

that the predictive ability of forward exchange rate premia has substantial economic value in 

predicting exchange rates compared to a random walk model.  

        Considering the effect of intervention, Dominguez and Frankel (1992) examine its 

impact on exchange rates using primary survey data along with secondary intervention data. 

They find that intervention has significant effect on exchange rates. Neely (2000) surveyed 

central bankers who conduct intervention, and reports that intervention is effective in 

changing exchange rates. Fatum and King (2005) analyse the effects of Canadian intervention 

and find that intervention does systematically affect exchange rates and is associated with 

reduced volatility in exchange rates. Other studies that use high frequency data (see e.g. 

Payne and Vitale, 2003; Dominguez 2003a,b) form a consensus that intervention has 

significant effects on  exchange rates, especially in the very short-run. Reitz (2002) concludes 

that the predictive power of forecasting methods increases in the case of intervention in the 

foreign exchange market by the central bank, relative to cases when the central bank does not 

intervene.  

 The micro structure theory of exchange rates gained popularity since the late 1990s 

when it was empirically tested that information in order flows drive exchange rates (Evans and 

Lyons, 1999, Luo, 2001, Medeiros, 2005). Evans and Lyons (2007) quantify the effect of news 

on exchange rates and observe that two-thirds of the effect of macro news on exchange rates is 

transmitted via order flow. Bjonnes and Rime (2003) find that private information plays an 

important role in the foreign exchange market and has a permanent effect on exchange rates. 

Order flows carrying this private information are hence important in determining exchange rates. 

Marsh and Rourke (2005) find that order flows from profit seeking financial institutions are 

positively correlated with exchange rate and flows from non–financial corporates are negatively 

correlated. They also find that the impact of order flow on exchange rate increases, as 
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probability of flow from the informed source increases. These views are also supported by 

Menkhoff and Schmeling (2006) who find that order flows coming from centres of political and 

financial decision-making influence exchange rates permanently. 

           In sum, several exchange rate models available in the literature have been tested during 

the last two and a half decades. No particular model seems to work best at all times/horizons. 

Monetary models based on the idea of fundamental driven exchange rate behaviour work best in 

the long run, but lose their predictability in the short run to naïve random walk forecasts. Order 

flows also play an important role in influencing the exchange rate.  Keeping in view the above 

results, this paper attempts to develop a model for the rupee-dollar exchange rates taking into 

account all the different monetary models along with the microstructure models incorporating 

order flow, as well as capital flows, forward premium and central bank intervention.  

  

3. Econometric Methodology 

This paper employs vector autoregressive (VAR) and Bayesian vector autoregressive 

(BVAR)  models to estimate the monetary model of the exchange rate (Re/$) and its 

augmented variants.  Vector autoregression models, vector error correction models and 

Bayesian vector autoregression formulations of the monetary models of exchange rate 

determination for developed countries are known to have produced forecasts which beat the 

random walk (see. e.g. MacDonald and Taylor (1993, 1994) and Choudhry and Lawler 

(1997) for VAR; Chen and Leung (2003) for BVAR and BVECM; Zita and Gupta (2007) for 

VAR, VECM, BVAR and BVECM.  Thus, this paper applies this technique to a developing 

country with a managed floating exchange rate regime.  

The first step in the econometric exercise is to test for nonstationarity followed by 

tests for cointegration and Granger causality. Finally, the VAR and BVAR models are 

estimated and tested for out-of-sample forecast accuracy. This section briefly describes the 

tests for nonstationarity, VAR and BVAR modelling, cointegration and Granger causality and 

tests for out-of-sample forecast accuracy. 

Tests for Nonstationarity 

The classical regression model requires that the dependent and independent variables in 

a regression be stationary in order to avoid the problem of what Granger and Newbold (1974) 

called ‘spurious regression’ characterized by a high R2, significant t-statistics but results that are 

without economic meaning. A stationary series exhibits mean reversion, has a finite, time 

invariant variance and a finite covariance between two values that depends only on their distance 

apart in time, not on their absolute location in time. If the characteristics of the stochastic process 



 14 

that generated a time series change overtime, i.e. if the series is nonstationary, it becomes 

difficult to represent it over past and future intervals of time by a simple algebraic model. Thus 

the first econometric exercise is to test if all the series are nonstationary or have a unit root. 

 A battery of unit root tests now exists to discern whether a time series exhibits I(1) (unit 

root) or I(0) (stationary) behaviour. In this paper, we employ the augmented Dickey-Fuller 

(ADF) test (1979, 1981) and its more powerful variant, the Dickey-Fuller generalized least 

squares (DF-GLS) test proposed by Elliot, Rothenberg and Stock (1996). These two tests share 

the same null hypothesis of a unit root. An alternative test is that proposed by Kwiatkowski et al. 

(1992) which has a null hypothesis of stationarity. If two of these three tests indicate 

nonstationarity for any series, we conclude that the series has a unit root.  

VAR and BVAR Modelling 
 
 In this study, we employ multivariate forecasting models in the vector autoregressive 

(VAR) and Bayesian VAR framework.  

 A vector autoregressive (VAR) model uses regularities in the historical data to specify 

the model. Economic theory only selects the economic variables to include in the model. A 

serious drawback of the VAR model, however, is that overparameterisation produces 

multicollinearity and loss of degrees of freedom that can lead to inefficient estimates and large 

out-of-sample forecasting errors. A possible solution is to exclude insignificant variables and/or 

lags based on statistical tests.  

 An alternative approach to overcome overparameterisation uses a Bayesian VAR model 

as described in Litterman (1981), Doan, Litterman and Sims (1984), Todd (1984), Litterman 

(1986), and Spencer (1993). Instead of eliminating longer lags and/or less important variables, 

the Bayesian technique imposes restrictions on these coefficients on the assumption that these 

are more likely to be near zero than the coefficients on shorter lags and/or more important 

variables. If, however, strong effects do occur from longer lags and/or less important variables, 

the data can override this assumption5

                                                 
5 Thus, the Bayesian model imposes prior beliefs on the relationships between different variables as well as between 
own lags of a particular variable. If these beliefs (restrictions) are appropriate, the forecasting ability of the model 
should improve. Several prior beliefs can be imposed so that the set of beliefs that produces the best forecasts is 
selected for making forecasts.  
 

.  The restrictions on the coefficients specify normal prior 

distributions with means zero and small standard deviations for all coefficients with decreasing 

standard deviations on increasing lags, except for the coefficient on the first own lag of a 

variable that is given a mean of unity. This so-called "Minnesota prior" was developed at the 

Federal Reserve Bank of Minneapolis and the University of Minnesota.  
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 The standard deviation of the prior distribution for lag m of variable j in equation i for 

all i, j, and m -- S(i, j, m) can be expressed as function of a small number of hyperparameters: 

w, d, and a weighting matrix f(i,j). This allows the forecaster to specify individual prior 

variances for a large number of coefficients based on only a few hyperparameters. The 

standard deviation is specified as follows: 

  S(i, j, m) = {wxg(m)xf(i, j)}si/sj; 

  f(i, j)  = 1, if i = j; 

    = k otherwise (0 < k < 1); and 

  g(m)  = m-d, d > 0. 

The term si equals the standard error of a univariate autoregression for variable i. The ratio 

si/sj scales the variables to account for differences in units of measurement and allows the 

specification of the prior without consideration of the magnitudes of the variables. The 

parameter w measures the standard deviation on the first own lag and describes the overall 

tightness of the prior. The tightness on lag m relative to lag 1 equals the function g(m), 

assumed to have a harmonic shape with decay factor d. The tightness of variable j relative to 

variable i in equation i equals the function f(i, j).6

 In the case of a VAR, Sims (1980) and others, e.g. Doan (1992), recommend estimating 

the VAR in levels even if the variables contain a unit root. The argument against differencing is 

that it discards information relating to comovements between the variables such as cointegrating 

relationships. The standard practice in the presence of a cointegrating relaionship between the 

variables in a VAR is to estimate the VAR in levels or to estimate its error correction 

  

 The above description of the BVAR models assumes that the variables are stationary. 

If the variables are nonstationary, they can continue to be specified in levels in a BVAR 

model because as pointed out by Sims et. al (1990, p.136) ‘……the Bayesian approach is 

entirely based on the likelihood function, which has the same Gaussian shape regardless of 

the presence of nonstationarity, [hence] Bayesian inference need take no special account of 

nonstationarity’. Furthermore, Dua and Ray (1995) show that the Minnesota prior is 

appropriate even when the variables are cointegrated. 

                                                 
6 Examples of selection of hyperparameters are given in Dua and Ray (1995), Dua and Smyth (1995), Dua and 
Miller (1996) and Dua, Miller and Smyth (1999); Dua, Raje and Sahoo (2003, 2008). Empirical evidence on 
comparative out-of-sample forecasting performance generally shows that the BVAR model outperforms the 
unrestricted VAR model. A few examples are Holden and Broomhead (1990), Artis and Zhang (1990), Dua and 
Ray (1995), Dua and Miller (1996), Dua, Miller and Smyth (1999), Dua, Raje and Sahoo (2003, 2008). 
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representation, the vector error correction model, VECM. If the variables are nonstationary but 

not cointegrated, the VAR can be estimated in first differences.  

Cointegration and Granger Causality 

The possibility of a cointegrating relationship between the variables is tested using the 

Johansen and Juselius (1990, 92) methodology. If the presence of cointegration is established, 

the concept of Granger causality is also tested in the VECM framework. For example, if two 

variables are cointegrated, i.e. they have a common stochastic trend, causality in the Granger 

(temporal) sense must exist in at least one direction (Granger, 1986; 1988). Since Granger 

causality is also a test of whether one variable can improve the forecasting performance of 

another, it is important to test for it to evaluate the predictive ability of a model.  

Granger-causality with respect to a particular variable can be tested by a joint test of 

statistical significance of the lagged error correction term and the lags of that explanatory 

variable.   

Evaluation of Forecasting Models 

 Evaluation of the forecasting models is based on RMSE, Theil’s U (Theil, 1966), and 

the Diebold-Mariano (1995) test. The models are initially estimated using monthly data over 

the period July 1996 to December 2006 and tested for out-of-sample forecast accuracy from 

January 2007 to June 2008. Recursive forecasts are generated from one- through twelve-

months-ahead and out-of-sample forecast accuracy of monetary model and its augmented 

variants is assessed. The overall average of the U statistic and the RMSE for up to twelve-

months-ahead is also calculated to gauge the accuracy of a model7

  The Diebold-Mariano test compares the forecast performance of alternative models, 

i.e., it tests the null hypothesis of no difference of the accuracy of two competing forecasts. 

Let 

. The forecast accuracy 

across techniques (VAR vs BVAR) is evaluated using the Diebold Mariano test. .  

tY 1

∧

 and tY 2

∧

, where t=1,2…n, be a pair of h-step ahead forecasts of tY  and e1t and e2t be 

the associated forecast errors. If g(e) be a function (e.g., mean square error) of the forecasts 

                                                 
7 To test for accuracy, the Theil coefficient is used that implicitly incorporates the naïve forecasts as the benchmark. 
If At+n denotes the actual value of a variable in period (t+n), and tFt+n the forecast made in period t for (t+n), then 
for T observations, the Theil U-statistic is defined as follows: 

  U = [Σ(At+n  - tFt+n)
2
/Σ(At+n - At)

2
]

0.5
. 

The U-statistic measures the ratio of the root mean square error (RMSE) of the model forecasts to the RMSE of 
naive, no-change forecasts (forecasts such that tFt+n= At).  A comparison with the naïve model is, therefore, 
implicit in the U-statistic. A U-statistic of 1 indicates that the model forecasts match the performance of naïve, 
no-change forecasts. A U-statistic >1 shows that the naïve forecasts outperform the model forecasts. If U is < 1, 
the forecasts from the model outperform the naïve forecasts.  
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errors, then the null hypothesis of equality of expected forecast performance is: E[g(e1t) – 

g(e2t)] = 0. Define dt = g(e1t) – g(e2t); t = 1,2,…n. For optimal h-step ahead forecasts, the 

sequence of forecasts errors follows a moving average process of order h–1. Therefore, it is 

assumed that for h-step ahead forecasts, all autocorrelations of order h or higher of the 

sequence dt are zero. Then the variance of ∑
=

−=
n

t
tdnd

1

1 )( is, asymtotically,  
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where kγ  is the kth autocovariance of dt. This autocovaiance can be estimated by 
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The Diebold-Mariano test statistic is given by 
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where )(dV
∧

is the estimated variance of d . Under the null hypothesis, Diebold-Mariano test 

statistic has an asymptotic standard normal distribution.  

Harvey et. al (1997) note that the Diebold-Mariano test could be seriously over-sized 

as the prediction horizon, h, increases. They therefore provide a modified Diebold-Mariano 

test statistic 

1
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Harvey et. al also recommend a further modification of comparing the statistics with 

critical values from the Student’s t distribution with (n–1) degrees of freedom, rather than 

from the standard normal distribution. 

Summary of steps in econometric estimation 
 In sum, the study proceeds as follows. First, the series are tested for the presence of a 

unit root using the augmented Dickey-Fuller, DF-GLS and KPSS tests.  

 Second, multivariate models (Models 2 through 4) described in the previous section on 

theoretical models are estimated using the VAR and BVAR techniques. Since Model 2 is the 

monetary model, Models 3 and 4 examine if the forecast performance of the monetary model 

can be improved by including additional variables. To estimate VAR models, if all the variables 

are nonstationary and integrated of the same order, the Johansen test is conducted for the 

presence of cointegration. If a cointegrating relationship exists, the VAR model can be estimated 
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in levels. Tests for Granger causality are also conducted in the VECM framework to evaluate the 

forecasting ability of the model. Lastly, Bayesian vector autoregressive models are estimated 

that impose prior beliefs on the relationships between different variables as well as between 

own lags of a particular variable. If these beliefs (restrictions) are appropriate, the forecasting 

ability of the model should improve. Thus, the performance of the VAR models against the 

corresponding BVAR versions is also assessed.  

  

4. Estimation of Alternative Forecasting Models 

Figure 1 shows the movements in the Re/$ rate in the period under study: July 1996 through 

June 2008. Table 1 reports the summary statistics of the exchange rate over the full period 

and sub-periods.  These statistics, along with the plot indicate turning points in May 2002 

(maximum of Rs. 49/$), January 2007 (maximum of Rs. 44.33/$), and January 2008 

(minimum of Rs. 39.37). The alternative models are estimated from July 1996 through 

December 2006. The out-of-sample forecasting performance of the alternative models is 

evaluated over January 2007 to June 2008 and also over the sub-period January 2007 to 

January 2008 to take into account the turning point in January 2008. 

 The various models estimated in the VAR and BVAR framework are described in 

Section 2 and are summarized below:  

Theoretical Models 
 
Model 1: Naïve forecast  
tet+n = et  

 
Model 2: Monetary Model 
et = f[(it-it*), (yt-yt

*), (mt-mt
*)] 

 
Model 38

                                                 
8 Current account differential is not included due to its correlation with trade balance differential.   

: Model 2 + other variables (inflation differential + trade balance differential + 
forward premium + capital inflows + volatility of capital inflows + order flow)  
et = f((it-it*), (yt-yt

*), (mt-mt
*), (πt-πt

*), (tb-tb*), fdpmt, capt, volt, oft) 
 
Model 4: Model 3 + central bank intervention 
et = f((it-it*), (yt-yt

*), (mt-mt
*), (πt-πt

*), (tb-tb*), fdpmt, capt, volt, oft, intt) 
 
 
 
 
 

Expected Signs of Variables 
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Dependent Variable: et 
Variables Expected  Sign 

it-it* +/- 
yt-yt

* - 
mt-mt

* + 
πt-πt

* + 
tb-tb* - 
fdpmt + 
capt  
volt +/- 
oft +/- 
intt + 

 
The notation is as follows: 
 
et Log of exchange rate of India (Rs./$) 
it-it* Difference between Indian (domestic) and US (foreign) Treasury bill rate  
yt-yt

* Difference between log of Indian and US index of industrial production 
mt-mt

* Difference between log of Indian and US money supply 
πt-πt

*  Difference between inflation rate of India and US 
tb-tb* Difference between trade balance of India and US 
fdpmt 3-month forward premia  
volt Volatility of capital inflows 
oft Order Flow 
intt Government intervention in open market 
 
Data definitions and sources are given in Annexure 1.  
 
Unit root tests are conducted on the above variables. Tests for the existence of a cointegrating 

relationship as well for Granger causality are also undertaken for the multivariate models 

given above.  The models are then estimated in the VAR and BVAR framework.  

Tests for Nonstationarity  
 
 The first step in the estimation of the alternative models is to test for nonstationarity. 

Three alternative tests are used, i.e., the augmented Dickey-Fuller (ADF) test, the Dickey-

Fuller Generalized Least Squares test and the KPSS test. If at least two of the three tests show 

the existence of a unit root, the series is considered as nonstationary. The tests for 

nonstationarity are reported monthly data from June 1996 to December 2006. 

 Table 2.1 reports the three tests with constant and trend. The inference at the 5% 

significance level is given in Table 2.2. This shows that apart from order flow and 

intervention, all other variables are nonstationary. Testing for differences of each variable 

confirms that all the variables are integrated of order one. 
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Tests for Cointegration and Granger Causality 

 Various specifications of the theoretical Model 3 were estimated using the 

cointegration approach. The final model was selected based on diagnostic checking and signs 

of the coefficients. The empirical models selected are given below and their cointegration 

equations are reported in Table 3.  

 Empirical Models (based on overall fit) 
 
Model 1: Naïve forecast  
tet+n = et  

 
Model 2: Monetary Model 
et = f((it-it*), (yt-yt

*), (mt-mt
*) 

 
Model 3′: Model 2 + other variables (forward premium + volatility of capital inflows + 
order flow)  
et = f((it-it*), (yt-yt

*), (mt-mt
*), fdpmt, volt, ∆oft) 

 
Model 4′: Model 3 + central bank intervention 
et = f((it-it*), (yt-yt

*), (mt-mt
*), fdpmt, volt, ∆oft, ∆intt) 

 
Models 1 and 2 above are the same as the theoretical versions. Model 3′ has fewer 

independent variables compared to its theoretical counterpart. This directly feeds into Model 

4′. Since the order flow and intervention variables are stationary, their sign and significance 

is determined in the framework of an error correction model. The empirical signs of all the 

variables conform to economic theory and are given below: 

 
Empirical Signs of Variables: Model 4′ 

Dependent Variable: et 
Variables Estimated Sign 

it-it* - 
yt-yt

* - 
mt-mt

* + 
fdpmt + 
volt - 
∆oft + 
∆intt + 

 

The Granger causality tests for Models 2-4 are reported in Tables 4.1-4.3. Apart from the 

intervention variable, all other variables Granger cause the exchange rate9

                                                 
9 The null hypothesis of no causality is tested up to 15% level of significance.   

. This result thus 
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justifies the inclusion of all the variables that Granger cause the exchange rate since these 

variables can potentially improve the predictive performance of the model.    

 Models 2 through 4 are estimated both in the VAR and BVAR frameworks and their 

predictive ability is evaluated over two out-of-sample periods taking into account the turning 

point in January 2008: January 2007 through January 2008 and January 2007 through June 

2008.    

 
Empirical Results: Out-of-sample forecasts - January 2007 to January 2008 

 

1. Model 2 performs consistently better than Model 1. This implies that the monetary 
model outperforms the random walk model. 

VAR Models: January 2007 to January 2008 
 

The forecast accuracy results for the VAR models are reported in Table 5.  

The main results are summarized below: 

  

2. Model 3′ performs better than Model 2. Thus, forecast accuracy can be improved by 
extending the monetary model to include forward premium, volatility of capital 
inflows and order flow.   

3. Model 4′ performs better than Model 3′ especially for longer term forecasts. 
Information on intervention by the central bank thus helps to improve forecasts at the 
longer end. 

 

1. Model 2 (monetary model) performs consistently better than Model 1 (random walk). 

BVAR Models: January 2007 to January 2008 
 

The forecast accuracy statistics for the BVAR models are reported in Table 6. Overall, the 

results are generally similar to those obtained for VAR models. 

 

2. Model 3′ performs consistently better than Model 2.  
3. Model 4′ performs better than Model 3′ especially for longer term forecasts implying 

that information on central bank intervention produces more accurate forecasts at the 
longer end. 

 
 

1. BVAR Model 3′ performs almost consistently better than the corresponding VAR 
model. 

VAR vs BVAR Models: January 2007 to January 2008 
 
The Diebold Mariano test results for the comparison of VAR and BVAR models for Models 

3 and 4 are reported in Table 7.   
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2. BVAR Model 4′ performs almost consistently better than the corresponding VAR 
model. 

 
The above results show that BVAR models yield more accurate forecasts than the VAR 
models.  
 

1. The monetary model outperforms the naïve forecast model. 

Observations: January 2007 to January 2008 
 

2. Information on the forward premium, volatility of capital inflows and order flows 
improve the accuracy of forecasts. It is thus possible to beat the monetary model.  

3. Including data on central bank intervention (Model 4′) helps to improve forecast 
accuracy further. 

4. BVAR models yield more accurate forecasts than their VAR counterparts. 
 
Empirical Results: Out-of-sample forecasts - January 2007 to June 2008 
 

The out-of-sample forecast accuracy statistics for the VAR model are reported in Table 8. The 

corresponding table for the BVAR model is 9.   

This period includes a turning point in January 2008. Possibly due to this, the empirical 

results are not as sharp as those obtained in the shorter period. At certain forecast horizons, the 

monetary model is not able to beat the random walk although the extended model (Model 3′) is 

almost consistently better than the monetary model for the VAR model. The results are similar 

for BVAR models although the result that Model 3′ produces better forecasts than Model 2 

comes out more clearly in the BVAR case. Furthermore, a comparison of the VAR and BVAR 

Models 3′ and 4′ show that BVAR models have a distinct advantage in producing more 

accurate longer term forecasts. 

Figures 2A and 2B illustrate the 3 and 12-month-ahead out-of-sample forecasts made 

using both the VAR and BVAR versions of Model 3′. Likewise, Figures 3A and 3B report the 

same on the basis of Model 4′. It is clear from these figures that the VAR and BVAR forecasts 

move in tandem. Further, the differences between the direction of forecasts made using Model 

3′ vs Model 4′ are not obvious from the graphs. The two sets of graphs look similar. Therefore 

the benefit of including intervention data is not apparent by examining the graphs.     

We also examine the direction of forecasts made around a turning point. This is illustrated 

by using Model 4′ to forecast in February 2008 up to June 2008. The forecasts are shown in 

Figure 4 and highlight the problem common to forecasting models – that forecasters tend to 

miss the turning point. The forecasts exhibit a downward trend while the series has moved 

upwards.   
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1. The monetary model does not always beat the naïve forecast.  

Observations: January 2007 to June 2008 
 

2. Information on the forward premium, volatility of capital inflows and order flows 
improve the accuracy of forecasts. It is thus possible to beat the monetary model.  

3. Including data on central bank intervention (Model 4′) helps to improve forecast 
accuracy further especially at the longer end. 

4. BVAR models yield more accurate forecasts than their VAR counterparts especially 
at longer forecast horizons. 

 
 
5. Conclusions 
 

This study attempts to gauge the forecasting ability of economic models with respect 

to exchange rates with the difference that this is done in the context of a developing country 

that follows a managed floating (as opposed to flexible) exchange rate regime. Starting from 

the naïve model, this study examines the forecasting performance of the monetary model and 

various extensions of it in the vector autoregressive (VAR) and Bayesian vector 

autoregressive (BVAR) framework. Extensions of the monetary model considered in this 

study include the forward premium, capital inflows, volatility of capital flows, order flows 

and central bank intervention. The study therefore examines, first, whether the monetary 

model can beat a random walk. Second, it investigates if the forecasting performance of the 

monetary model can be improved by extending it. Third, the study evaluates the forecasting 

performance of a VAR model vs a BVAR model. Lastly, it considers if information on 

intervention by the central bank can improve forecast accuracy. The main findings are as 

follows: 

 
♦ The monetary model generally outperforms the naïve model. This negates the findings of 

the seminal paper by Meese and Rogoff (1983) that finds that models which are based 
on economic fundamentals cannot outperform a naive random walk model.  

♦ Forecast accuracy can be improved by extending the monetary model to include 
forward premium, volatility of capital inflows and order flow.   

♦ Information on intervention by the central bank helps to improve forecasts at the 
longer end. 

♦ Bayesian vector autoregressive models generally outperform their corresponding VAR 
variants. 

♦ Turning points are difficult to predict as illustrated using Model 4′ with predictions made 
in February 2008.  

 
Thus, availability of information on certain key variables at regular intervals that affect the 

exchange rate can lead to a more informed view about the behavior of the future exchange 
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rates by the market participants, which may allow them to plan their foreign exchange 

exposure better by hedging them appropriately. Such key variables could include past data on 

exchange rates, forward premia, capital flows, turnover, and intervention by central banks 

etc.  As regards availability of data on key variables relating to the Indian foreign exchange 

market, most of the data are available in public domain and can easily be accessed by market 

participants, academicians and professional researchers. Using these variables skillfully will 

help them to gain sound insight into future exchange rate movements. 

 In this context, it is important to recognize that the Indian approach in recent years has 

been guided by the broad principles of careful monitoring and management of exchange rates 

with flexibility, without a fixed target or a pre-announced target or a band, coupled with the 

ability to intervene if and when necessary, while allowing the underlying demand and supply 

conditions to determine the exchange rate movements over a period in an orderly way. 

Subject to this predominant objective, the exchange rate policy is guided by the need to 

reduce excess volatility, prevent the emergence of establishing speculative activities, help 

maintain adequate level of reserves, and develop an orderly foreign exchange market. The 

Indian market, like markets of other developing countries, is not yet very deep and broad, and 

can sometimes be characterized by uneven flow of demand and supply over different periods. 

In this situation, the central bank (Reserve Bank of India) has been prepared to make sales 

and purchases of foreign currency in order to even out lumpy demand and supply in the 

relatively thin forex market and to smoothen jerky movements.   
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Annexure 1 
Data Definitions and Sources  

Variable Definition Source 
e 
 

Rupee/ US Dollar Spot Exchange Rate Handbook of Statistics on the Indian 
Economy and RBI Bulletin  

 
i 

Auctions of 91-day Government of India 
Treasury Bills 

Handbook of Statistics on the Indian 
Economy and RBI Bulletin 

 
i∗ 

3-Month Treasury Bill of US, Secondary 
Market Rate 

Board of Governors of the Federal 
Reserve System 

 
y 

Index of Industrial Production for India 
seasonally adjusted using Census X12. 

Handbook of Statistics on the Indian 
Economy and RBI Bulletin 

 
y∗  

Industrial Production Index for US, 
seasonally adjusted 

Board of Governors of the Federal 
Reserve System 

 
 
π 

Year-on-year Inflation Rate calculated 
from Consumer Price Index for 
Industrial Workers for India 

Handbook of Statistics on the Indian 
Economy and RBI Bulletin  

 
 
π∗ 

Year-on-year Inflation Rate calculated 
from Consumer Price Index for All 
Urban Consumers; All Items for US 

U.S. Department of Labor: Bureau of 
Labor Statistics 

 
m 

Money supply(M3) for India, seasonally 
adjusted using Census X12 

Handbook of Statistics on the Indian 
Economy and Weekly Statistical 
Supplement 

 
m∗ 

M2 for US, seasonally adjusted Board of Governors of the Federal 
Reserve System 

tb Trade Balance of India in US $ Billion RBI Bulletin 

 
tb* 

Trade Balance of US in US $ Billion  US Census Bureau of Economic 
Analysis 

 
fdp 

Three-month forward premium  
( % per annum) 

Handbook of Statistics on the Indian 
Economy and Weekly Statistical 
Supplement 

 
cap 

Capital flows measured by Foreign 
Direct Investment plus Foreign Private 
Investment Inflows in India in US $ 
Billion 

Handbook of Statistics on the Indian 
Economy and RBI Bulletin  

vol Volatility of capital inflows measured 
by three period moving average 
standard deviation of sum of FDI and  
FII: 

∑
=

−+−+ −=
m

i
ititt ZZmV

1

2/12
21 ])()/1[(  

where m=3 and Z is cap 

Calculated 

 
of 

Order flow - Turnover in foreign 
exchange market in US $ Billion 

Handbook of Statistics on the Indian 
Economy and RBI Bulletin  

 
int 

(Purchase minus Sale) of US Dollars by 
RBI 

Handbook of Statistics on the Indian 
Economy and RBI Bulletin  
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Table 1 
Summary Statistics for Exchange Rate 

 

Time Period Mean Maximum Minimum 
Standard 
Deviation 

Jul 1996 - Jun 2008 43.52 
49.00       

(May 2002) 
35.51        

(Jul 1996) 3.73 

Jul 1996 - Dec 2006 43.86 
49.00       

(May 2002) 
35.51        

(Jul 1996) 3.82 

Jan 2007 – Jun 2008 41.12 
44.33  

(Jan 2007) 
39.37        

(Jan 2008) 1.69 

Jan 2007 - Jan 2008 41.20 
44.33         

(Jan 2007) 
39.37         

(Jan 2008) 1.86 

Feb 2008 - Jun 2008 40.90 
42.82         

(Jun 2008) 
39.73        

(Feb 2008) 1.28 
  

Table 2.1 
ADF, DF-GLS and KPSS Tests 

(Constant and trend)  
July 1996 to December 2006 

 
 VARIABLE ADF DF-GLS KPSS 

(l=8) 
 

et 
 

-1.1192      
 

-0.4147 
 

0.346 
 

it-it* 
 

-2.5144      
 

-2.2992 
 

0.227 
 

yt-yt
* 

 
-3.0568      

 
-0.5383 

 
0.317 

 
mt-mt

* 
 

-0.77086      
 

-0.2207 
 

0.354 
 

πt-πt
* 

 
-2.6037     

 
-2.9580 

 
0.116 

 
tb-tb* 

 
-2.5620      

 
-3.1571 

 
0.108 

 
fdpmt 

 
-2.6281      

 
-3.3942 

 
0.054 

 
volt 

 
  -3.1237      

 
-0.7189 

 
0.239 

 
∆oft 

 
-2.5657      

 
-8.0816 

 
0.107 

 
intt 

 
-24.184 

 
-8.6548 

 
0.122 

 
             Critical Value 

 

10% 
5% 
1% 

-3.13 
-3.41 
-3.96 

-3.55 
-3.01 
-2.72 

0.119 
0.146 
0.216 



 33 

Table 2.2 
Unit Root Test Summary 

July 1996 to December 2006 
 

Variables ADF DF-GLS KPSS Inference 
 

et I(1) I(1) I(1) I(1) 
it-it* I(1) I(1) I(1) I(1) 
yt-yt

* I(1) I(1) I(1) I(1) 
mt-mt

* I(1) I(1) I(1) I(1) 
πt-πt

* I(1) I(1) I(0) I(1) 
tb-tb* I(1) I(1) I(0) I(1) 
fdpmt I(1) I(1)a I(0) I(1) 
volt I(1) I(1) I(1) I(1) 
∆oft I(1) I(0) I(0) I(0) 
intt I(0) I(0) I(0)b I(0) 

a. Null hypothesis of unit root not rejected at 1% 
b. Null hypothesis of no unit root not rejected at 1% but rejected at 5%.  
       This does not affect overall inference  

 
Table 3 

Cointegrating Equations (Dependent Variable: et) 
July 1996 to December 2006 

 
Variable Model 2 Model 3 Model 4 

it-it* -0.097 -0.126 -0.185 
yt-yt

* -1.061 -3.277 -4.228 
mt-mt

* 2.283 5.585 6.401 
fdpmt - 0.070 0.0833 

volt - -2.102 -1.999 
  
 

Table 4.1 
Granger Causality Tests 

July 1996 to December 2006 
  

MODEL 2: et = f((it-it*), (yt-yt
*), (mt-mt

*) 
 
 

Null Hypothesis Number 
of Lags 

χ2 
[p-value] 

Conclusion 

et is not Granger caused by 
 it-it* 

 
2 

 
4.2082[.122] 

 
Reject H0 

et is not Granger caused by  
yt-yt

* 
 

2 
 
6.6321[.036] 

 
Reject H0 

et is not Granger caused by  
mt-mt

* 
 

2 
 
5.2722[.072] 

 
Reject H0 
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Table 4.2 

Granger Causality Tests 
July 1996 to December 2006 

 
MODEL 3: et = f((it-it*), (yt-yt

*), (mt-mt
*), fdpmt, volt, ∆oft) 

  
 

Null Hypothesis Number 
of Lags 

χ2 
[p-value] 

Conclusion 

et is not Granger caused by  
it-it* 

 
2 

 
4.8623[.088] 

 
Reject H0 

et is not Granger caused by  
yt-yt

* 
 

2 
 

5.9908[.050] 
 

Reject H0 
et is not Granger caused by  
mt-mt

* 
 

2 
 

6.1741[.046] 
 

Reject H0 
et is not Granger caused by  
fdpmt 

2 4.8883[.087] Reject H0 

et is not Granger caused by 
volt 

2 5.7506[.056] Reject H0 

et is not Granger caused by  
∆oft 

2      2.5585[.012]* Reject H0 

* t-statistic is from the error correction model where ∆oft has a positive sign. 
 

Table 4.3 
Granger Causality Tests 

July 1996 to December 2006 
 

MODEL 4: et = f((it-it*), (yt-yt
*), (mt-mt

*), fdpmt, volt, ∆oft, ∆int) 
 
 

Null Hypothesis Number 
of Lags 

χ2 
[p-value] 

Conclusion 

et is not Granger caused by 
 it-it* 

 
2 

 
5.2473[.073] 

 
Reject H0 

et is not Granger caused by  
yt-yt

* 
 

2 
 

6.4220[.040] 
 

Reject H0 
et is not Granger caused by  
mt-mt

* 
 

2 
 

6.5762[.037] 
 

Reject H0 
et is not Granger caused by 
fdpmt 

2 5.2624[.072] Reject H0 

et is not Granger caused by 
volt 

2 6.1058[.047] Reject H0 

et is not Granger caused by  
∆oft 

2 
   2.4236[.017]** Reject H0 

et is not Granger Caused by  
∆intt 

2    0.48722[.627]** Do not reject H0 

** t-statistic from the error correction model where ∆intt has a positive sign. 



 35 

 
Table 5 

VAR Models 
Out-of-sample Forecast Accuracy: January 2007 to January 2008 

 

Month 
Ahead No.Obs 

RMSE Theil U2 

Model 1 
           3-mth av 

Model 2 
           3-mth av 

Model 3’ 
           3-mth av 

Model 4’ 
          3-mth av 

 
Model 2 
           3-mth av 

 
Model 3’ 
          3-mth av 

 
Model 4’ 
         3-mth av 

1 13 0.722   0.508   0.447   0.446   0.704   0.619   0.618   
2 12 1.275   0.945   0.877   0.877   0.741   0.688   0.688   
3 11 1.756 1.251 1.344 0.932 1.325 0.883 1.318 0.880 0.765 0.737 0.754 0.687 0.751 0.685 
4 10 2.252   1.694   1.719   1.712   0.752   0.763   0.760   
5 9 2.617   1.919   1.940   1.931   0.733   0.741   0.738   
6 8 2.888 2.586 2.017 1.876 1.931 1.863 1.909 1.851 0.698 0.728 0.669 0.724 0.661 0.720 
7 7 3.302   2.189   1.900   1.870   0.663   0.576   0.566   
8 6 3.709   2.444   2.069   2.001   0.659   0.558   0.539   
9 5 4.307 3.773 2.910 2.514 2.566 2.178 2.472 2.114 0.676 0.666 0.596 0.576 0.574 0.560 

10 4 4.852   3.407   3.242   3.132   0.702   0.668   0.645   
11 3 4.962   3.765   3.784   3.654   0.759   0.763   0.736   
12 2 5.079 4.964 3.657 3.609 3.803 3.610 3.746 3.511 0.720 0.727 0.749 0.727 0.738 0.706 

Average 3.143   2.233   2.134   2.089   0.714   0.679   0.668   
Note:  

1. Accuracy measures are calculated using antilog of forecast and actual values although the models are estimated using logs.  
2. For Model 1 (naïve forecast), Theil U2, by definition, equals one.   
3. Optimal number of lags for all VAR models is 2.  
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Table 6 
BVAR Models 

Out-of-sample Forecast Accuracy: January 2007 to January 2008 
 

Month 
ahead No.Obs 

RMSE Theil U2 

Model 1 
           3-mth av 

Model 2 
           3-mth av 

Model 3’ 
           3-mth av 

Model 4’ 
          3-mth av 

 
Model 2 
           3-mth av 

 
Model 3’ 
          3-mth av 

 
Model 4’ 

         3-mth av 
1 13 0.722   0.528   0.467   0.465   0.731   0.647   0.644   
2 12 1.275   0.958   0.858   0.851   0.752   0.673   0.668   
3 11 1.756 1.251 1.320 0.935 1.231 0.852 1.217 0.845 0.752 0.745 0.701 0.674 0.693 0.668 
4 10 2.252   1.634   1.540   1.526   0.725   0.684   0.678   
5 9 2.617   1.829   1.694   1.679   0.699   0.647   0.642   
6 8 2.888 2.586 1.905 1.789 1.610 1.615 1.585 1.597 0.660 0.695 0.557 0.630 0.549 0.623 
7 7 3.302   2.103   1.504   1.472   0.637   0.455   0.446   
8 6 3.709   2.379   1.699   1.631   0.641   0.458   0.440   
9 5 4.307 3.773 2.830 2.437 2.124 1.776 2.047 1.717 0.657 0.645 0.493 0.469 0.475 0.454 

10 4 4.852   3.321   2.673   2.592   0.684   0.551   0.534   
11 3 4.962   3.661   3.107   3.016   0.738   0.626   0.608   
12 2 5.079 4.964 3.654 3.546 3.198 2.993 3.166 2.925 0.720 0.714 0.630 0.602 0.623 0.588 

Average 3.143   2.177   1.809   1.771   0.700   0.594   0.583   
Note:  

1. Accuracy measures are calculated using antilog of forecast and actual values although the models are estimated using logs.  
2. For Model 1 (naïve forecast), Theil U2, by definition, equals one.   
3. Optimal hyperparameters for all BVAR models are as follows: w=.2, d=1, k=.7.  
4. Optimal number of lags is 3 for Model 2 and 2 for Models 3 and 4.
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Table 7 
DM Test for VAR vs BVAR Models 

Out-of-sample Period: January 2007 to January 2008 
 

Model 3’                              Model 4’ 

 
Note:   1.  “Better” implies “yields more accurate forecasts”. 

2.    a : significant at 1% ; b : significant at 5%; c : significant at 10%;  
       d : significant at 15%;  e : significant at 20% 

Month Ahead VAR vs BVAR 

1 VAR better than BVARb 

2 Indifferent 
3 BVAR better than VARc 
4 BVAR better than VARb 
5 BVAR better than VARa 

6 BVAR better than VARa 
7 BVAR better than VARa 
8 BVAR better than VARa 
9 BVAR better than VARa 

10 BVAR better than VARa 
11 BVAR better than VARa 
12 BVAR better than VARa 

Month Ahead VAR vs BVAR 

1 VAR better than BVARb 
2 Indifferent 
3 BVAR better than VARc 
4 BVAR better than VARb 

5 BVAR better than VARa 

6 BVAR better than VARa 
7 BVAR better than VARa 
8 BVAR better than VARb 
9 BVAR better than VARb 

10 BVAR better than VARa 
11 BVAR better than VARa 
12 BVAR better than VARa 
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Table 8 
VAR Models 

Out-of-sample Forecast Accuracy: January 2007 to June 2008 
 

Month 
ahead 

No. 
Obs 

RMSE Theil U2 

Model 1 
           3-mth av 

Model 2 
           3-mth av 

Model 3’ 
           3-mth av 

Model 4’ 
          3-mth av 

 
Model 2 
           3-mth av 

 
Model 3’ 
          3-mth av 

 
Model 4’ 

         3-mth av 
1 18 0.795  0.617  0.520  0.519  0.777  0.654  0.652  
2 17 1.328  1.168  1.013  1.016  0.879  0.763  0.765  
3 16 1.673 1.266 1.569 1.118 1.434 0.989 1.433 0.989 0.938 0.864 0.857 0.758 0.856 0.758 
4 15 2.104  1.933  1.761  1.756  0.919  0.837  0.835  
5 14 2.384  2.223  1.985  1.973  0.932  0.833  0.828  
6 13 2.545 2.345 2.363 2.173 2.051 1.932 2.021 1.917 0.928 0.926 0.806 0.825 0.794 0.819 
7 12 2.782  2.497  2.080  2.046  0.898  0.748  0.736  
8 11 2.966  2.568  2.122  2.101  0.866  0.716  0.708  
9 10 3.177 2.975 2.587 2.551 2.155 2.119 2.122 2.089 0.814 0.859 0.678 0.714 0.668 0.704 

10 9 3.435  2.534  2.365  2.304  0.738  0.689  0.671  
11 8 3.581  2.449  2.440  2.377  0.684  0.681  0.664  
12 7 3.666 3.561 2.573 2.519 2.541 2.449 2.469 2.383 0.702 0.708 0.693 0.688 0.673 0.669 
Average 2.536  2.090  1.872  1.845  0.840  0.746  0.737  

Note:  
1. Accuracy measures are calculated using antilog of forecast and actual values although the models are estimated using logs.  
2. For Model 1 (naïve forecast), Theil U2, by definition, equals one.   
3. Optimal number of lags for all VAR models is 2.  
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Table 9.1 
BVAR Models 

Out-of-sample Forecast Accuracy: January 2007 to June 2008 
 

Month 
ahead N.Obs 

RMSE Theil U2 

Model 1 
           3-mth av 

Model 2 
           3-mth av 

Model 3’ 
           3-mth av 

Model 4’ 
          3-mth av 

 
Model 2 
           3-mth av 

 
Model 3’ 
          3-mth av 

 
Model 4’ 

         3-mth av 
1 18 0.795  0.646  0.550  0.548  0.813  0.692  0.689  
2 17 1.328  1.218  1.039  1.039  0.917  0.783  0.782  
3 16 1.673 1.266 1.642 1.169 1.435 1.008 1.430 1.005 0.982 0.904 0.858 0.777 0.854 0.775 
4 15 2.104  2.032  1.750  1.742  0.966  0.832  0.828  
5 14 2.384  2.347  1.952  1.941  0.985  0.819  0.814  
6 13 2.545 2.345 2.518 2.299 1.984 1.895 1.957 1.880 0.989 0.980 0.779 0.810 0.769 0.804 
7 12 2.782  2.659  1.979  1.951  0.956  0.711  0.701  
8 11 2.966  2.698  1.945  1.924  0.910  0.656  0.649  
9 10 3.177 2.975 2.683 2.680 1.905 1.943 1.856 1.910 0.845 0.903 0.600 0.656 0.584 0.645 

10 9 3.435  2.613  2.081  1.990  0.761  0.606  0.579  
11 8 3.581  2.566  2.110  2.020  0.717  0.589  0.564  
12 7 3.666 3.561 2.771 2.650 2.226 2.139 2.129 2.046 0.756 0.744 0.607 0.601 0.581 0.575 

Average 2.536  2.199  1.746  1.710  0.883  0.711  0.700  
Note:  

1. Accuracy measures are calculated using antilog of forecast and actual values although the models are estimated using logs.  
2. For Model 1 (naïve forecast), Theil U2, by definition, equals one.   
3. Optimal hyperparameters for all BVAR models are as follows: w=.2, d=1, k=.7.  
4. Optimal number of lags is 3 for Model 2 and 2 for Models 3 and 4.



 40 

Table 10 
DM Test for VAR vs BVAR Models 

Out-of-sample Period: January 2007 to June 2008 
 

 
Model 3’             Model 4’ 

 
                      
 
 
 
 
 
 
 
 
 
 
 

Note:   1.  “Better” implies “yields more accurate forecasts”. 
2.    a : significant at 1% ; b : significant at 5%; c : significant at 10%;  
       d : significant at 15%;  e : significant at 20% 

 

Month 
Ahead VAR vs BVAR 

1 VAR better than BVARa 
2 Indifferent 
3 Indifferent 
4 Indifferent 
5 Indifferent 
6 Indifferent 
7 Indifferent 
8 BVAR better than VARd 
9 BVAR better than VARc 

10 BVAR better than VARc 
11 BVAR better than VARb 
12 BVAR better than VARc 

Month 
Ahead VAR vs BVAR 

1 VAR better than BVARa 
2 VAR better than BVARe 
3 Indifferent 
4 Indifferent 
5 Indifferent 
6 Indifferent 
7 Indifferent 
8 BVAR better than VARd 
9 BVAR better than VARc 

10 BVAR better than VARc 
11 BVAR better than VARc 
12 BVAR better than VARd 
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Fig 1: Exchange Rate – Re/$ 
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Model 3′  

Fig 2.A: 3-Month Ahead Forecast 
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Fig 2.B: 12-Month Ahead Forecast 
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Model 4′ 
 

Fig 3.A: 3-Month Ahead Forecast 
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Fig 3.B: 12-Month Ahead Forecast 
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Fig 4: Model 4′ -- Multi-period Forecasts made in February 2008 
Model 4: JAN 2008
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