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Abstract

In this paper, we provide a novel experimental auction design that exploits
an exogenous variation in the probability of winning to test for the presence
of expectations-based reference dependent preferences. We prove that (i) in
this design, (which is a one parameter modification of a Becker-de Groote-
Marschak (BDM) auction), a lower probability of winning will cause a loss
averse agent to bid lower, for a large range of intrinsic values for the object.
Data from an experiment demonstrate the existence of this effect. The effect
would be absent if preferences were ‘standard’, or if the status quo was the
reference point. Thus we contribute to the nascent literature that empirically
documents the importance of expectations as a source of reference points. (ii)
We further prove that the experimental design enables unique identification
of participants’ value distribution and loss aversion parameter. Our estimates
of loss aversion suggest that women are more loss averse than men. Finally,
as a contribution to experimental methodology, we prove that the BDM
mechanism will underestimate loss averse participants’ values, we quantify
the underestimation, and we suggest methods to bound this bias.

JEL Codes: C91, D03, D44

Keywords: Auctions, Expectations, Loss Aversion, Reference dependence
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1 Introduction

In this paper, we provide a novel experimental auction design that exploits
an exogenous variation in the probability of winning to test for the presence
of expectations-based reference dependent preferences. We prove that in
this design, a lower probability of winning will cause a loss averse agent to
bid lower, for a large range of intrinsic values for the object. The effect
would be absent if preferences were ‘standard’1, or if the status quo was the
reference point. Thus we contribute to the nascent literature that empirically
documents the importance of expectations as a source of reference points.
We provide evidence in favor of expectations-based reference dependence, by
replicating an experiment based on this design at 4 educational institutions.

The auction underlying the experiment is the Becker-de Groote-Marschak
(BDM) mechanism. In a BDM auction, a single bidder competes against a
random draw or bid from a known distribution; if her bid beats the random
draw, she wins the object and pays a price equal to the random draw; if her
bid is lower, on the other hand, she loses. It is easy to see that if preferences
are standard, this is an incentive-compatible mechanism (i.e., it is optimal
to bid one’s value for the object). Due to this property, the BDM auction is
popular as a mechanism to ‘elicit’ preferences; however, our use of it is not
as an elicitation mechanism.

If a bidder has reference dependent preferences, it is in general not op-
timal to bid one’s value in a BDM auction. In a recent paper on reference
dependent preferences, Koszegi and Rabin, 2006, provide a descriptive model
in which an agent’s utility is the sum of consumption utility (the utility from
actual consumption: this is conventionally all there is to utility in many
applications), and gain-loss utility with respect to a reference point.2 With
standard preferences, there is only consumption utility; in this case, in a
BDM auction, bidding one’s value for the object is a dominant strategy.
However, if the outcome of a bid also gives rise to gain or loss sensations,
when the outcome is compared to some reference point, this must be traded
off as well in computing the optimal bid, and the ‘bid your value’ result does
not in general hold.

1By standard preferences, we mean that the bidder has an intrinsic value v for the

object; and winning it at a price p gives a payoff equal to v−p, whereas not winning gives

a payoff equal to 0.
2In early formulations of reference dependence gain or loss with respect to a reference

point was alone the carrier of utility (Kahneman and Tversky, 1979).
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While earlier work modeled the reference point as exogenous, (often
equating it to some ‘status quo’), Koszegi and Rabin, 2006, (henceforth,
K-R) marks an important departure: it introduces and models the notion
of the reference point as endogenous expectations, and further, as a useful
benchmark, assumes these expectations are rational. In this framework, gain-
loss utility is forward looking: realized consumption is compared, and gain
or loss assessed, with the immediately prior expectations about consump-
tion. Lange and Ratan, 2010, adapt and develop this framework to analyze
standard auctions, and use their framework to compare bidding behavior
in induced values vs. homegrown values auctions, in first and second-price
auctions. Our experiment has an auction environment and so the K-R type
theory for it follows the Lange-Ratan modeling. The reference point in this
formulation is a key factor in our experiment.

In the context of an auction, an agent’s bid induces a distribution over
outcomes (given the distribution of values of other agents and their bidding
strategies).3 Since this is the distribution of outcomes that is anticipated,
in their Koszegi-Rabin type of model, gain or loss sensations arise when
comparing the actual realized outcome with the possible outcomes in this
distribution; thus this anticipated distribution of outcomes is the reference
point. (See Section 2 for elaboration of this point).

We employ the Lange-Ratan modeling to analyze optimal bidding by a
loss averse agent, in a BDM auction. Our experiment design manipulates the
rational expectations-based reference point by assigning individuals to one of
two treatments: individuals bid against uniform distributions with supports
[0, K1] and [0, K2] respectively in the two treatments, with K2 > K1. Thus
a typical bid b induces a higher probability of winning in Treatment 1 (i.e.
against the distribution on [0, K1]) than in Treatment 2; more generally, the
distribution of outcomes induced differs across the two treatments. Suppose
b is the optimal bid of a loss averse agent who has an intrinsic value v for
the object, when she bids against a uniform distribution on [0, K]. We prove
(Section 2, Proposition 3) that then for a wide range of possible values of
v, expanding the support of the competing uniform distribution from some
interval [0, K] by increasing K, reduces the marginal benefit from bidding b;
so, it is optimal to reduce the bid if the competing uniform distribution has an
expanded support. Thus in this case of Koszegi-Rabin kind of reference point,
we expect bids to be lower on average in Treatment 2, than in Treatment 1

3An outcome in this context is a pair of numbers, the first element of which signifies

whether the agent won or lost, and the second element is the price she pays conditional

on winning.
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(see Proposition 3 for a precise statement).

The treatment effect embedded in the experiment design is absent if the
reference point is the status quo. It is easy to see that a status quo reference
point does not change when K is changed. The treatment effect is also absent
if preferences are standard. In that case, if an agent’s value for the object
is v, it is optimal to bid v in both treatments. Our statistical comparison
of bids in the two treatments shows that bids are indeed significantly lower
in Treatment 2 (Sections 3-5), rejecting a null of zero treatment effect and
affirming expectations-based, reference dependent preferences.

As the evidence favors reference dependent preferences, we then exploit
our auction design to estimate loss aversion parameters, as well as agents’
distribution of intrinsic values (since these are not equal to the observed bids,
due to reference dependence). The methodological framework is that of the
empirical auctions literature, which attempts to identify and structurally
estimate models of auctions (the literature is recent but too numerous to
cite: see for instance Athey and Haile, 2002, Guerre, Perrigne and Vuong,
2000, 2009); but to our knowledge, this is the first identification result in an
auction setting with loss aversion; it is also the first paper to estimate loss
aversion parameters in a commodity auction setting4. We prove (Section 4,
Proposition 4) that our experimental design enables unique identification of
participants’ value distribution and loss aversion parameter. Our parametric
likelihood estimates of loss aversion suggest that women are more loss averse
than men.

We use the estimation exercise to accomplish two further objectives.
First, we re-estimate the treatment effect more accurately, (i.e., by how much
is the average bid lower in Treatment 2, in the relevant range of values?),
using knowledge of loss aversion and value distribution parameters (Section
5.1). Finally, as a contribution to experimental methodology, we evaluate the
bias in the BDM auction, if it is used for eliciting preferences when agents
are actually loss averse. We show that the BDM mechanism will underesti-
mate loss averse participants’ values, we quantify the underestimation, and
we suggest methods to bound this bias.

The theory of reference dependence with expectations-based reference
points is recent, active, and has potentially important applications in various
areas. Koszegi and Rabin, 2006, introduce applications to consumer behavior

4Ratan, 2010 is the only other paper that undertakes estimation of loss aversion in an

auction; but there, the setting is one of induced values, making the estimation less onerous

and identification superfluous.
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and labor supply. Heidhues and Koszegi, 2008, study optimal pricing strate-
gies for firms facing loss averse consumers. Lange and Ratan, 2010, develop
the Koszegi-Rabin framework in the context of first and second price auc-
tions, and show that if agents are loss averse, one can explain the aggressive
bidding in induced value first price auction experiments, but this does not
translate to similar bidding behavior in commodity auctions. Herweg, Muller
and Weinschenk, 2009, and Macera, 2010 use the Koszegi-Rabin framework
to develop theory in the context of optimal incentive contracts.

While the above papers develop and apply the theory, there is at this
point a dearth of empirical evidence to demonstrate that reference points
are indeed based on expectations. As far as we know, this paper is the only
one so far to manipulate expectations-based reference points and study the
effect in auctions. The only other paper that directly manipulates reference
points based on expectations is Ericson and Fuster, 2010; they have two
trading experiments5. Clearly, more experiments and experimental designs
are necessary to build some stylized facts.

In the context of designing such experiments, we feel moreover that in
a K-R setting, an auction is a simpler environment in which to set up a
reference dependence experiment. In the Koszegi-Rabin paper, the agent’s
decision-making environment is as follows. Prior to the decision period, she
knows that one of several choice sets can occur (with known probabilities).
At this point, she makes a plan of what to choose, in each of these choice
sets. This plan results in expectations, or a distribution (because the actual
choice set is not known yet), over how she will consume, which becomes her
reference point. Then uncertainty resolves and she faces one of the choice
sets. In the K-R equilibrium notion (‘personal equilibrium’), the agent’s
optimal choice from this set, subject to her reference point, must equal the
choice she had planned from this choice set. In contrast to this setting, an
auction has a simpler decision-making environment, since the only action
performed is to choose a bid; thus there is no temporal separation between a
plan and its execution (see also Section 2). We feel this property makes for
simpler manipulations of reference points.

While the literature on loss aversion with exogenously given reference
points (often, the status quo is the reference point used, but there are other
sources of reference points as well) is large (e.g. Genesove and Mayer, 2001
(housing), Barberis, Huang and Santos, 2001 (finance), Camerer et al., 1997

5Other interesting papers which discuss implications of Koszegi and Rabin include

Knetsch and Wong, 2009, Smith, 2008, Abeler, Falk, Gotte and Huffman, 2009, Crawford

and Meng, 2011 and Spears, 2011.
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and Fehr and Gotte, 2007 (labor supply), Sydnor, 2006 (insurance), Benartzi
and Thaler, 1995 (trading)), it is not directly relevant to the objectives at-
tempted in this paper.

In what follows, Section 2 contains a discussion of the reference depen-
dent preferences model and the treatment effect. Section 3 describes the
experiment, the data, and the first analysis of the treatment effect and the
rejection of the hypothesis of standard preferences. Section 4 contains the
identification result and estimation strategy. Section 5 presents the estima-
tion results; it also uses these to estimate a more sophisticated, model based
treatment effect; it further presents some simulations using our estimates.
Section 6 concludes.

2 The Models

Since optimal bidding in a BDM auction when preferences are standard is
well known, we discuss it briefly at a later point in this section; we begin
with optimal bidding when preferences are reference dependent. The model
is an application of the K-R framework to auctions, as developed by Lange
and Ratan, 2010; we try to keep the notation similar. We now give a brief
preface to the general model (see K-R and Lange-Ratan for details).

In our application, there are 2 commodities, money (commodity 0) and
chocolate (commodity 1). The utility from commodity t, ut(ct|rt), depends
on the consumption level ct and reference point rt. Consumption utility is
vt(ct) ≡ ut(ct|ct) (K-R). Utility is a sum of consumption utility and gain-loss
utility; following the simplification in Lange and Ratan, we normalize gains
to zero. Then utility from commodity t is assumed to be given by

ut(ct|rt) = vt(ct)− θmax{0, vt(rt)− vt(ct)}

with θ > 0 implying that the agent is loss-averse. Total utility u(c|r)
(where c, r are vectors) is the sum of these utilities over the two commodi-
ties. Lange and Ratan show that with this specification, the WTA/WTP
ratio (willingness to accept vs. pay) equals (1 + θ)2 at the margin. If (vec-
tor) consumption and reference levels are stochastic with distributions Fc
and Fr respectively, then the agent gets an expected utility U(Fc|Fr) =∫ ∫

u(c|r)dFr(r)dFc(c). That is, the expectation involves a point by point
comparison of all possible consumption and reference vector configurations.

As explained in Lange and Ratan, the auction structure is simpler than
the general K-R framework, when one formulates the rational expectations
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reference point. The reason is that the choice of a bid induces a distribu-
tion of possible consumption outcomes (in terms of obtaining the object and
quantum of payment); with rational expectations, this is also the reference
distribution. So, Fc = Fr. We now apply this framework to the experiment
at hand.

In the experiment, which is more fully described in Section 3, each subject
participates in a Becker-de Groote-Marschak (BDM) auction. The subject
must submit a sealed bid for the object, knowing that there will be a compet-
ing bid that is randomly generated by a computer from a uniform distribution
on [0, K], where K > 0 is a given real number. If the subject’s bid is at least
as large as the competing bid, the subject wins the object and pays the
competing bid; if her bid is lower, she loses.

To fix notation, suppose the random competing bid is from a distribution
F with density f on [0, K]. In the reference dependent preferences model, if
an agent has intrinsic value v for the object and bids b, her payoff is defined
by

U(v, b, θ) =
∫ b
0 (v − p)f(p)dp− θ(1− F (b))

∫ b
0 pf(p)dp

−θ
∫ b
0 (
∫ p
0 (p− s)f(s)ds) f(p)dp− θvF (b)(1− F (b))

(1)

Here, θ is a measure of the degree of loss aversion. (i). The first term
corresponds to ‘consumption utility’,(a weighted average of utilities of the
type (v− p) of winning at a price p)6. The other terms arise out of reference
dependence and loss aversion. (ii). The agent expects to lose the auction,
and keep her money, with probability (1 − F (b)). In each case of winning
with price p ≤ b, a money loss is experienced relative to this event. The
second term gives the expectation of these money losses, multiplied by θ.
(iii) The third term captures money losses when the agent wins the auction,
pays a price p, but expects to pay s < p; the term is θ times the expectation
of (p − s) given that she wins the auction, over all (p − s) > 0. (iv). The
fourth term comes from losses incurred from not winning the object (which
happens with probability (1−F (b))), relative to reference outcomes in which
the object is won (which happens with probability F (b)).

Substituting the uniform distribution (f(s) = 1/K, F (s) = s/K, for all
0 ≤ s ≤ K) in the payoff function, and assuming that the bid b ∈ [0, K] gives

U(v, b, θ,K) =
v

K
(1− θ)b+

1

K

(
θ(
v

K
− 1

2
)− 1

2

)
b2 +

θ

3K2
b3 (2)

6This also corresponds to the utility specification for standard preferences.
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2.1 Optimal Bid Function

The first two Propositions and Corollary 1 describe various aspects of the
optimal bid function. A brief preview: for a loss aversion parameter that
is not very large (i.e., corresponding to marginal WTA/WTP ratio of less
than 2), the optimal bid function is continuous. It is strictly increasing on
an interval, until the optimal bid hits K; for larger values than this critical
one, the optimal bid stays equal to K. The function is strictly convex on the
stretch on which it is increasing. For values less than (2/3)K, the optimal
bid is shaded below value; for an interval of values higher than (2/3)K, bids
exceed values. See Figure 1.

Proposition 1 below characterizes the optimal bid function.

Proposition 1 Let θ ∈ (0, 1). Then there exists v̄ > 0 such that the optimal

bid function is given by

b(v) =


(1+θ−(2θv/K))−

√
(2θv/K−(1+θ))2−4θ(1−θ)v/K

2θ/K
if v < v̄

K otherwise
(3)

Proof. See Appendix.

A part of the proof sets up the problem of maximizing the utility (Eq.(2))
subject to the bid being in the interval [0, K]. (From Eq.(1), we can see that a
bid greater than K fetches the same utility as bidding K (the smallest bid at
which the agent wins the object with probability 1); so we can restrict bids to
this interval). The first order condition for an interior optimum is a quadratic
in bid b. The optimal bid function in Proposition 1 has 2 segments. On the
first interval [0, v̄], the optimal bid is given by the lower root lr(v, θ,K) (or
lr(v) for short) of the first order quadratic equation. If 0 < θ < 1, lr(v) is
increasing and convex. For v ≥ v̄, the optimal bid equals K.

Proposition 1 leaves open the possibility of a jump in the optimal bid
function, at v = v̄. Whether the optimal bid function is continuous, or has
a jump, depends on the magnitude of the loss aversion parameter θ; a jump
discontinuity is introduced if θ is greater than a critical level, as the following
Proposition shows.

Proposition 2 Let θc =
√

2 − 1. If θ ≤ θc, the optimal bid function is

continuous, and v̄ in Proposition 1 solves lr(v̄, θ,K) = K. If θ > θc, the
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optimal bid function has a jump at some value v̄ at which the utility from

bidding K equals the utility from bidding lr(v̄, θ,K) < K.

Proof. Appendix.

The critical value θc of the loss aversion parameter corresponds to a
marginal WTA/WTP ratio equal to 2. A value of θ significantly larger than
this should show up in bid data as a significant gap between bids equal to
K and lower bids. The bid data that we have does not exhibit such a gap,
so for simplicity we will restrict the discussion of the treatment effect that
follows to the case where the optimal bid function is continuous.7

We close this discussion with a corollary that is used later. It shows that
for a large stretch of values v ∈ (0, 2

3
K), the optimal bid involves shading the

bid below one’s value; whereas, for values beyond 2
3
K, up to a certain point,

it is optimal to submit a bid greater than one’s value.

Corollary 1 Let θ ∈ (0, θc]. In the interval of values [0, v̄], the optimal bid

function b(v) is strictly convex; moreover, b(v) satisfies

b(v)


< v ∀ v ∈ (0, 2

3
K)

= v for v = 2
3
K

> v ∀ v ∈ (2
3
K, v̄)

It is straightforward to verify convexity by differentiating the bid function
in Proposition 1 twice: in fact, convexity is satisfied provided 0 < θ < 1.
When v ∈ [0, v̄], Proposition 1 establishes that b(v) equals the lower root
lr(v, θ,K) of the quadratic first order condition. It is easy to show that
the equation lr(v, θ,K) = v has a solution at v = 2

3
K. The Corollary thus

follows, since b(v) is convex, continuous and strictly increasing in the relevant
interval. Figure 1 illustrates.

2.2 Theoretical Treatment Effect

We test whether agents’ bidding behavior exhibits reference dependent pref-
erences, as opposed to standard preferences, using a comparative static prop-
erty of the reference dependence model. The experiment is designed to

7Strictly speaking, of course, this statement is true provided the bid data correspond

to a single loss aversion parameter value, common to all bidders.
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compare optimal bid functions in 2 alternative scenarios: bidding against a
draw from uniform U [0, K1], and bidding against a draw from U [0, K2], with
K2 > K1. These scenarios correspond to Treatments 1 and 2 respectively, of
the experimental design (Section 3).

Consider first an agent with standard preferences, and intrinsic value v
for the object. Winning the object at a price p (when the draw p is less than
her bid) gives the agent a payoff equal to v− p (so her expected payoff when
bidding against a draw from the uniform distribution on [0, K] is given by
simply the first term in Eq.(1)). It is well known that in this case, it is a
weakly dominant strategy for the agent to bid v. This agent’s bid should
therefore be identical across the 2 treatments.

There is a caveat. Bidding against a random draw from U [0, K], in the
current setup an agent with value v ≥ K is equally well off bidding K instead
of v, and winning for sure. Thus the optimal bid function comparable to that
for Proposition (1) for reference dependent preferences, is the function β(v)
defined by: β(v) = v for all v < K, β(v) = K for v ≥ K. For an agent
using this bid function, her bids would be identical across the 2 treatments
if v ≤ K1. If v > K1, her bid in treatment 2 (being equal to v) is higher
than her bid of K1 in treatment 1. We would therefore expect the average
bid for Treatment 2 to be at least as large as the average bid for Treatment
1, if agents had standard preferences. See Figure 3.

We would not expect a Treatment Effect in this experiment if the reference
point is the status quo, either. For example, suppose the status quo is (0, 0)
(absence of the good, and zero payment for it). Then the utility from bidding
b, for an agent with value v for the good, is given by U(v, b, θ) =

∫ b
0 (v −

p) 1
K
dp − θ

∫ b
0
p
K
dp. The second term corresponds to loss sensations from

paying p when the reference point is 0. It is easy to see that when the
optimal bid is an interior optimum (i.e. less than K), it equals v/(1 + θ).
While this is shaded below the value v, it does not depend on the value of K;
and so the treatment effect should be zero over a relevant range of values.

Now consider the case of an agent with reference dependent preferences
and a rational expectations-based reference point. Proposition (3) below es-
tablishes that for a large range of values, agents will bid lower in Treatment
2 than in Treatment 1. The intuition is that given a bid b, increasing the
length of the interval [0, K] from which the competing random draw is gen-
erated decreases the agent’s probability of winning. At the margin, there is
a utility decrease owing to increased loss sensations, that leads the agent to
optimally bid lower.

For simplicity, we state the Proposition for loss aversion parameters that
give rise to continuous optimal bid functions.
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Proposition 3 Treatment Effect:

Let θ ≤ θc ≡
√

2 − 1. Suppose an agent has reference dependent pref-

erences. Let her optimal bid functions in the 2 treatments (bidding against

draws from U [0, K1] and U [0, K2], K2 > K1) be denoted b1(v) and b2(v) re-

spectively. Let v̄1 be the value at which her optimal bid function in Treatment

1 satisfies lr(v̄1, θ,K1) = K1. There exists vτ > v̄1 s.t. for all v ∈ (0, vτ ),

b2(v) < b1(v).

Proof. Appendix.
Figure 2 illustrates Proposition (3). The two bid functions are increasing

and convex on the stretches in which the bids are equal to the lower root of
the quadratic first order condition. Since b2(v) lies below b1(v) initially, and
is continuous, it cuts it at vτ to the right of v̄1. For v greater than this, it is
optimal to bid K1 in Treatment 1, whereas the optimal bid in Treatment 2
is higher. Note that the Treatment effect says that for any v for which it is
optimal to bid less than K1 in Treatment 1, it is optimal to bid even lower
in Treatment 2. Figure 2 is drawn for a value of θ = 0.2.

3 Experiment, Data and a First Test

The data used in this paper consist of participants’ bids in BDM auctions;
they are extracted from an experiment that was replicated at 4 educational
institutions in Delhi, India in 2010-11. The subjects/participants were stu-
dents of various undergraduate and Master’s courses. The commodity for
which BDM auctions were conducted was chocolate; the particular chocolate
bar used here was an 80 gram bar of premium dark chocolate. The brand was
unknown to the students as this chocolate is a fairly recent boutique brand
that is not marketed from stores; it is available at a single delicatessen.

The experiment was replicated with with one institution being covered in
a day. The short time span and considerable distance between the institutions
was designed to prevent any information about the experiment flowing from
an institution that was recently visited and another that was not yet covered8.

8The large size of the city and the heavy institution density also act as barriers to quick

flow of information for experiments of this size
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At each institution, students who signed up for the experiment were ran-
domly assigned to one of the two treatments. The two treatments were done
one immediately after the other, so no information about the experiment
was shared between participants. The sequencing of the two treatments was
randomly determined. Given the population chosen for the experiment, the
subjects were homogeneous in terms of age(19-23) and their student back-
ground; gender was a principal source of possible heterogeneity. So the list
of students that signed up was divided into the male and female subgroups,
and randomized allocation to the treatments was done separately by gender.
Overall, the number of male students was significantly larger. Also, because
not everyone that signed up actually showed up for the experiment, the ac-
tual proportion of each gender across the treatments is not equal. However,
the absentee rate was small.

The subjects were instructed on the auctions in a classroom kind of set-
ting, with an attempt, however, to provide adequate private space to each
participant. For their participation in the experiment, each subject was given
Rupees 200 at the beginning; this money was one of the items in the folder
of materials given to each of them. It was emphasized that for each partici-
pant, this was an exercise in individual decision-making. Following a display
and description of chocolates (without revealing the brand), about a sixth of
each bar of 80 gram chocolate was given to each subject for tasting. This was
followed by a description of the auction. The BDM auction was explained in
detail, contrasted with the more familiar first-price auction, and illustrated
with an example. The consequences of incrementing a bid by some amount,
on the probability of winning and on the increase in expected payment were
brought out. Questions were taken and answered along the way and at the
end of this training part. Since the BDM is increasingly used for preference
elicitation, guides for standard subject training practice exist at the textbook
level (e.g. Lusk’s and Shogren’s 2007 book on experimental auctions). The
one departure from the usual practice, in our experiment, was: it is standard
practice to give an example to explain to the subject that it is optimal for
her to bid her value. Since this is not the case for loss averse bidders, we
obviously excluded this practice from our instructions.

Subjects were asked to write down bids on the sheet of paper provided
to each of them for this purpose, and put it in the provided envelope; they
also filled in a short questionnaire on basic demographics and responses to
the chocolate. The envelope and sheet of paper of each subject had a unique
serial number. Random draws from the competing distribution for the treat-
ment had been recorded on sheets of paper and put in envelopes by enu-
merators; these envelopes used the same set of serial numbers as the ones
for the envelopes given to subjects to seal their bids. The envelopes were
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then matched using common serial number, and the result of each auction
was implemented; winners got an 80 gram bar of the chocolate and paid the
competing random draw as the price.

The reference dependence theory of Section 2 shows that if an individual is
loss averse and has an intrinsic value v in an appropriate interval, then her bid
is lower competing against a uniform distribution on [0, K2], K2 > K1, than
against that on [0, K1]. The experiment design is however between-subject.
We felt that having the same individual bid in separate auctions with two
competing distributions ran the risk of confusion, unanticipated framing, and
priming. If individuals are randomly assigned to the two treatments, with a
large enough sample size, then we would expect intrinsic values of the object
to be similar on average across the two treatments. So, if preferences were
standard, or if the reference point is the status quo, we would expect mean
bids to be similar across the treatments; whereas in the case of expectations-
based reference dependence, we would expect the mean bid to be lower in
Treatment 2.

In fact, we do see this treatment effect, that is implied by the reference
dependence model, for each institution. However, owing to the large vari-
ances in bids, the small sample sizes at individual institutions (30-40 per
treatment) imply that we are powered to detect significance at 3 out of the
4 institutions (even though the effect is of appreciable magnitude at all of
them). So we begin our analysis by pooling the data from the 4 institutions.
An institution-wise analysis is reported later, in Section 5 (and Table 5).

For this pooled sample, summary statistics for the two treatments are
presented in Table 1. There were 301 subjects in all, quite evenly divided
across the two treatments. The intervals for the uniform distributions in
Treatments 1 and 2 had right supports at Rupees 150 and 200 respectively.
While the mean bid is higher in Treatment 1 than in Treatment 2 (by about
Rupees 5.52, with a standard error of about 3.58), a simple comparison of
these means is not correct as we now argue.

It was shown in Section 2 that for values beyond a right support K,
choosing to bid K is optimal (even with standard preferences: of course, in
the standard preferences case a bid equal to one’s value is optimal as well).
Thus the data show that no one bid above 150 and 200 respectively, in the
treatments. (The proportions of bids equal to 150 and 200 for the respective
treatments are 6.5 percent and 1.4 percent). Under the null hypothesis that
people have standard preferences, a subject with value v between 150 and
200 could then optimally bid 150 if she is in Treatment 1, and v if she is in
Treatment 2. So the range of values for which we expect the same bid in the
two treatments (under the null hypothesis) should be restricted to [0, 150].
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Since we observe bids (not values), we achieve this now by excluding from
both treatments all bids that are greater than or equal to 150.

Table 2 summarizes the data for this truncated sample. The means for
the two treatments are 64.15 (treatment 1) and 56.49 (treatment 2); the t-
statistic equals 3.12. So the difference in means is highly significant. Since
the treatment effect ranks the bids (with bids from treatment 2 being ranked
lower), we also did the nonparametric Wilcoxon test. The p-value, at 0.0358,
is again highly significant.

Table 3 reports a regression which establishes the same fact. We regress
bids on a treatment dummy (=1 for Treatment 2) and gender (=1 for fe-
males); the coefficient of the treatment dummy is estimated to be −7.4 and
its standard error is 4.3. For a one-tailed test of the absence of treatment
effect versus its presence (in the direction that bids are lower in treatment
2 as predicted by the theory), the implied p-value for the treatment dummy
coefficient is 0.044. So this regression clearly suggests that the treatment
effect is negative and significant (at the 95% confidence level).

4 Estimation

Since the data set has only one bid per individual, we cannot estimate loss
aversion parameters for each individual. In fact, it is standard in other
empirical auction applications (e.g. estimating the degree of risk aversion
of bidders) to assume and estimate a common parameter for the entire set
of agents (e.g. Guerre, Perrigne and Vuong, 2009). The main source of
heterogeneity in our data set that is possible to account for is gender. So,
we estimate gender-specific loss aversion parameters.

4.1 Identification

Our estimation is enabled by the following identification result: loosely put,
given a pair of observed population bid distributions, arising out of a popula-
tion of agents submitting bids in 2 BDM treatments (using uniform distribu-
tions on [0, K1] and [0, K2], K2 > K1), we can obtain a unique loss aversion
coefficient θ and value distribution G for the population, that can generate
the pair of observed bid distributions. We state this result formally now,
for the case of continuous bid functions; so, we restrict the class of reference
dependent models to come out of loss aversion parameters θ ∈ (0, θc]. The
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identification employs a certain α-quantile of the bid distributions. Limit-
ing the space of the loss aversion parameter as above necessitates that the
α−quantile bid for Treatment 2 be bounded below as in Proposition 4 below.
It can be shown that for the more general case of 0 < θ < 1, the implied
bound is close to 0; so this bid restriction is quite weak for the more general
case.

To state Proposition 4, we define α to be the quantile at which the bid
in Treatment 1 equals 2

3
K1. We use the notation b1α, b2α to represent the

bids for this α-quantile, for the two Treatments; so we have by construction
b1α = 2

3
K1.

Proposition 4 Suppose G1, G2 are the observed bid distributions for the two

Treatments, and have continuous densities upto their atoms at the bids K1

and K2 respectively. If b2α ≥ lr(2
3
K1, θc, K2), then there exists a unique loss

aversion parameter θ̃, and a value distribution G unique on [0, K2

1+θ̃
), such

that if the population of agents has the distribution G of values and loss

aversion parameter θ̃, their bids in the two Treatments will generate the bid

distributions G1 and G2.

Proof. Appendix.
The idea behind the proof is partly illustrated in Figure 4. It shows that

the bid b1α = (2/3)K1 is optimal for the value (2/3)K1, regardless of the
loss aversion parameter (this follows from Corollary 1). The proof goes on
to show that then the corresponding α-quantile bid for Treatment 2, b2α,
is the optimal bid for value (2/3)K1, for a unique loss aversion parameter
θ̃. Having recovered θ̃, we simply take the bid distribution over the longer
interval (Treatment 2), and since values are a monotone transform of bids
via the optimal bid function b2(v) (upto K2), we can compute the value
distribution G for v in the usual way.

4.2 Estimation

We use a parametric Maximum Likelihood Estimation strategy to estimate
the value distribution and degree of loss aversion of the subjects from their
bids in the experiment/BDM auction. We shall assume that the value vi
(or consumption utility from a unit of the commodity) for individual i is
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independent of other individuals’ values and is distributed as a normal with
mean µ and variance σ2. After working with several specifications, the precise
model we estimated assumes that males and females draw their values from
normal distributions with different means, and that they have different loss
aversion parameters. For the sake of simplifying the exposition, we however
use a single distribution and a single loss aversion parameter. We represent
this distribution and density by Φ and φ respectively; these are functions of
µ and σ, which we suppress for simplicity.

Since the optimal bid function b(v, θ,K) for a treatment with BDM com-
peting distribution being uniform on [0, K] is strictly increasing for values
in [0, K/(1 + θ)) and equal to K thereafter, the contribution of a bid to the
likelihood function is as follows.

For b < K, the likelihood contribution is given by φ(b−1(b, θ,K)). For a
bid equal to K, all we know is that the value exceeds K/(1 + θ). Thus the
likelihood contribution equals 1−Φ(K/(1+θ)). The aggregate log-likelihood
function adds up the logarithms of these terms.

5 Results

5.1 Loss Aversion Estimates and Treatment Effect

The estimated normal value distribution has a mean of 66.05 and standard
deviation of 31.97 for males (see Table 4). Values for females are estimated to
have a significantly higher mean of 73.27. The degree of loss aversion for male
subjects is estimated to be 0.196 (corresponding to a marginal WTA/WTP
ratio of 1.43). For females it is almost 40% higher at 0.272 (WTA/WTP
equals 1.62). (see Table 4).

Armed with estimates of the value distributions and loss aversion param-
eters, we are also able to get more informed estimates of weighted means and
mean differences for the two treatments. In the test reported in section 3, all
bids that are greater than or equal to 150 were dropped. But in fact, in the
loss aversion model, which we have statistically shown to be closer to reality,
Treatment 2 bids are lower than Treatment 1 bids upto the value vτ in Fig-
ure 2. Separately for males and females, our estimates of the loss aversion
parameter give us an estimate of vτ . Of the bids equal to 150 in Treatment 1,
we now retain some; we drop the proportion of bids equal to 150 that equals
the probability that v > vτ , using our estimates of the distribution of values.
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We then recompute the difference between the average bids in the two
treatments. We do this exercise separately for males and females and then
recompute the weighted means. The weighted mean bid for Treatment 1
is estimated at 68.21, while for Treatment 2 it is 57.17, the t-value is 3.69,
thus reconfirming a highly significant treatment effect, and one of fairly large
magnitude (16 percent).

We present the estimated bid functions for males and females for each of
the two treatments in Figure 5. The bid functions for Treatment 2 lie below
those for Treatment 1, till v = b−1

2 (150). Beyond this, b2() lies above b1(), as
it does not pay to bid higher than 150 in Treatment 1.

Corollary 1 established that the subjects whose values belong to (0, 2
3
K)

are expected to be bidding conservatively relative to their values, while those
whose values are greater than 2

3
k (for a stretch) bid aggressively. Note that

such departure from bidding their true values is therefore more pronounced
for females (who have a higher loss aversion θ) than for males.

Table 5 presents estimates of the treatment effect by institution, corre-
sponding therefore to the 4 replications of the experiment. The treatment
effect is in the correct direction for all 4 institutions. Its magnitude varies
approximately from 10 to 30 percent. The t-statistic is highly significant
for 3 of the 4 institutions, and the p-values for the Wilcoxon test indicates
signficance for these institutions (between 2 percent and 10 percent); for the
4th institution, the sample size was too small to detect significance.

5.2 An Application to Preference Elicitation

The BDM auction is a popular way to elicit preferences or willingness to pay.
In such applications, it is assumed that the observed bids are the true values
of subjects (i.e. the BDM is incentive compatible). But if agents are loss
averse, this is not an accurate assumption; we quantify the consequences of
this inaccuracy for our data set as follows. For this application, we use the
data and estimates for males.

First, using the loss aversion model, we estimated a latent distribution
of values for males. Suppose loss aversion is the true model. The mean
value is Rupees 66.05. The cumulative distribution can also be regarded as
a demand curve for chocolate, assuming unit demand for each individual;
we simply have to put values on the vertical axis, and the proportion of
population that has values greater than or equal to each given value, on the
horizontal axis. (See Figure 6).

17



If a researcher assumes that preferences are standard, however, she would
run the BDM experiment with a single distribution. Suppose this is uniform
[0, 200]. Assuming that the bids are equal to values, we estimate a parametric
normal value distribution by the method of Maximum Likelihood, with the
Treatment 2 data for males. The mean value is now estimated to be about
54. This is considerably lower than when we assume loss aversion, because
in that case values are greater than the optimal bids for much of the value
distribution. We plot the corresponding demand curve in Figure 6; it is
considerably lower than the estimate under loss aversion. We then repeat this
entire exercise for Treatment 1 data for males; this corresponds to assuming
that the researcher uses this narrower distribution. The estimated mean
value is now about 64; this is actually quite close to the one we estimated
in the loss aversion model. The corresponding demand curve (Figure 6) is
also much closer to the estimated demand under loss aversion. The reason
is the direction of the Treatment Effect: with loss aversion, the bids are
more aggressive with the narrower range (upto 150; Treatment 1), than in
Treatment 2; and hence are closer to the underlying values.

One important implication of this is that if we do a conventional prefer-
ence elicitation exercise, using the incentive compatibility assumption for the
BDM auction, and if preferences are actually loss averse, then our estimate
of the value distribution will be closer to the truth if our choice of BDM
distribution is a smaller interval. Of course, the choice of interval must be
judicious; if it is too narrow, we run the risk of a lot of bid censoring.

6 Conclusion

In conclusion, our novel auction experiment design enables testing for the
presence of reference dependent preferences using observed bids from BDM
auctions. The bid data from an experiment with this design rejects the hy-
pothesis that bidders have ‘standard’ preferences, and affirm the alternative
of reference dependence. Facilitated by our identification strategy (that rests
on this experiment design), we also estimate the extent of loss aversion in
this auction context. We apply our estimates to quantify the underestima-
tion of values if the BDM auction is used for preference elicitation under the
assumption of ‘standard’ preferences.

The loss aversion estimates that we get are important in their own way.
They enable a comparison with estimates from other papers in other con-
texts. They also suggest that females are more loss averse than males. Fur-
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thermore, they can be used to throw fresh light on the use of the BDM
auction as a preference elicitation mechanism. Our data show that people
are loss averse, and on average, their bids are lower than their values for the
object. Incorrectly assuming that the BDM auction is incentive compatible
would therefore lead to an underestimation of values, willingness to pay, and
demand. We quantify this showing in particular that a judicious choice of
the BDM distribution can still minimize this underestimation.
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7 Tables and Figures

Table 1

Summary statistics of the data

Statistic Treatment 1 Treatment 2

(K=150) (K=200)

Estimate Estimate

Mean 68.03 62.68

Standard error 3.41 3.71

Number of bids 155 146

Male-female ratio 1.18 1.86

Mean (Males) 65.58 59.93

Standard error (Males) 4.31 4.20

Mean (Females) 70.93 67.82

Standard error (Females) 5.43 7.19

Number of bids equal to K 10 2

Proportion of bids equal to k 0.065 0.014

.
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Table 2

Summary statistics of the truncated∗ data

Statistic Treatment 1 Treatment 2

(K=150) (K=200)

Estimate Estimate

Mean 64.15 56.49

Standard error 3.10 2.95

Number of bids 141 136

Male-female ratio 1.27 2.02

Mean (Males) 64.04 54.76

Standard error (Males) 4.02 3.47

Mean (Females) 64.29 59.98

Standard error (Females) 4.88 5.49

.

∗ Retaining bids that are strictly between zero and 150

Table 3

Regressing Bids (truncated sample) on Treatment and Gender Dummies

Variable Estimate Std Error p value

Intercept 63.024 3.578 < 2e− 16

Treatment -7.385 4.312 0.0879

Gender 2.559 4.427 0.5637

.
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Table 4

Maximum Likelihood Estimation - Results
Variable Estimate Std error t value p value

Mean (males) 66.0478755 2.0975472 31.4881 < 2e− 16∗∗∗

Std dev 31.9686438 1.0486600 30.4852 < 2e− 16∗∗∗

Theta (males) 0.1956383 0.0013571 144.1574 < 2e− 16∗∗∗

Difference in theta 0.0765039 0.0015927 48.0343 < 2e− 16∗∗∗

Difference in means 7.2203240 3.1459692 2.2951 0.02173∗

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

.

Mean (females) = Mean (males) + Difference in means

Theta (females) = Theta (males) + Difference in theta
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Table 5

Institution-wise Treatment Effect Estimates
Institution Treatment 1 Treatment 2 t-statistic wilcox test

Weighted Mean Weighted Mean p-value

A 85.95 73.02 9.18 0.0586

B 65 51.49 3.57 0.09287

C 58.27 52.46 0.49 0.3483

D 60.48 39.08 3.21 0.0156

.
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8 Appendix

Proof of Proposition (1). Note from Eq.(1)that the payoff from a bid b > K

equals the payoff from bidding exactly K. Thus we can take the range of optimal

bids to be a subset of [0,K]. So the optimal bid for intrinsic value v is derived

by choosing b ∈ [0,K] to maximize the utility function (Eq.(2)). Differentiating

the utility function w.r.t bid b, we get a first order condition for an interior local

maximum:

v(1− θ)/K +
2
K

[θ(
v

K
− 1

2
)− 1

2
]b+

θb2

K2
= 0 (4)

Let the lower root of this quadratic equation be denoted lr(v, θ,K); this is the

expression on the RHS of Equation (3). When there is no confusion, we will use

the shorthand lr(v) for the lower root. We first note some properties of lr(v).

Step 1. There is a threshold v̂ > 0 such that for all 0 ≤ v ≤ v̂, lr(v) is real.

Proof. The discriminant of lr(v) can be written as

g(v/K) = 4θ2(
v

K
)2 − 8θ

v

K
+ (1 + θ)2

.

This is a convex quadratic in v
K , with left root (say v̂(θ)/K) given by

v̂(θ)/K = θ−1
[
1− (1/2)

√
4− (1 + θ)2

]
.

If 0 < θ < 1, then this is positive; and for all 0 ≤ v < v̂(θ), g(v/K) > 0; so,

lr(v) is real.

Step 2. lr(0) = 0. lr(v) is increasing on v ∈ [0, v̂(θ)).

Proof. lr(0) = 0 follows by substituting 0 for v in the expression for lr(v).

Differentiating lr(v), we have

lr
′
(v) = −1 + 2(1− θv

K
)δ−1/2
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where δ = [θ(2v
k − 1)− 1]2− 4θ(1− θ) vK is the discriminant of lr(v), and hence

is positive for v ∈ [0, v̂(θ)). Rearranging and squaring gives us that lr
′
(v) > 0 if

and only if 4 > (1 + θ)2, which holds since 0 < θ < 1.

Step 3. For v ∈ [0, v̂(θ)), the optimal bid is either lr(v) or K.

Proof. Since the first order condition is a convex quadratic, the lower root

lr(v) satisfies the necessary first and second order conditions for a local max. So,

the utility function u(v, b, θ,K) is locally concave at b = lr(v). Since utility is

a cubic in b (with positive coefficient on the cubic term), after the local max at

lr(v) and the subsequent local min at the larger root, utility increases in b. So

if 0 ≤ lr(v) ≤ K, the utility max will occur either at lr(v) or at the boundary

K, unless utility at both these bids is negative. But this last is not possible if

0 < θ < 1. For in this case, for v > 0, a small positive bid always gives positive

utility (the first term of Eq. (2) is then positive, and dominates the other terms

which are an order or two magnitude lower for small b). The utility at the local

max is thus at least this positive amount.

If lr(v) > K for some v, we can take K to be the optimal bid by the argument

in the first line of this proof.

Step 4. There exists v
′
> 0 such that for all v ∈ [0, v

′
) the optimal bid

b(v) = lr(v).

Proof. For an agent with value v, bidding b = K gives a utility equal to u(v, b =

K, θ,K) = v− K
2 (1+ θ

3). This is negative for an agent with v = 0; whereas bidding

lr(v) = lr(0) = 0 gives a payoff of 0, which is greater; i.e. u(0, lr(0), θ,K) >

u(0,K, θ,K). From Step 3, this implies that it is optimal for type v = 0 to bid

lr(0).

From Step 1, lr(v) is real for v ∈ [0, v̂(θ)]. Since lr(v) is continuous in this

interval, and u(v, b, θ,K) is continuous (see Eq. (2)), u(v, lr(v), θ,K) is continuous

in v. So by continuity, u(v, lr(v), θ,K) > u(v,K, θ,K) for some interval of v ∈

[0, v
′
).

Step 5. The optimal bid for an agent with value v̂(θ) equals K.
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Proof. When v = v̂(θ), the cubic utility function (Eq.(2)) is increasing in b

with a point of inflection at b = lr(v̂(θ)). It follows that it is maximized at a bid

equal to K.

Step 6. The optimal bid function b(v) is non decreasing in v.

Proof. From Equation (2), we get the cross-partial

∂2u

∂v∂b
=

1− θ
K

+
2θb
K2

If 0 < θ < 1 (and bid b ≥ 0), this is strictly positive. So, u is supermodular.

Hence, b(v) is non decreasing. (See Topkis (1978)).

From Step 5, u(v̂(θ), lr(v̂(θ)), θ,K) ≤ u(v̂(θ),K, θ,K). Let v̄ be the lowest v ∈

[0, v̂(θ)] such that u(v, lr(v), θ,K) = u(v,K, θ,K). By Step 4 and the monotonicity

of the bid function (Step 6), it follows that the bid function b(v) = lr(v) for

v ∈ [0, v̄) and b(v) = K for v ≥ v̄.

Proof of Proposition (2). As in the proof of Proposition 1 (Step 1), let v̂(θ)

be the threshold v at which the lower and higher real roots of the quadratic FOC

equal each other. That is,

v̂(θ)/K = θ−1
[
1− (1/2)

√
4− (1 + θ)2

]
.

So the lower root (strictly speaking the single real repeated root)

lr(v̂(θ), θ,K) =
1− θ(2 v̂

K − 1)
2 θ
K

Notice that lr(v̂(θ),θ,K)
θ K > (=, <)1 according as θ < (=, >)

√
2−1 ≡ θc. Three

cases are then possible.

Case 1. θ > θc. So lr(v̂(θ), θ,K) < K. Parametrized at v̂(θ), the utility

function is increasing in the bid, and the single repeated root is at the point

of inflection lr(v̂(θ), θ,K), which is lower than K. So, K is the optimal bid:

u(v̂, lr(v̂), θ,K) < u(v̂, K, θ,K).
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On the other hand, when v = 0, we have seen in the earlier proof that

u(0, lr(0), θ,K) > u(0,K, θ,K). By continuity (the Intermediate Value Theorem),

there exists a smallest v̄ satisfying 0 < v̄ < v̂ s.t. u(v̄, lr(v̄), θ,K) = u(v̄, K, θ,K).

Also, since lr(v) is increasing, lr(v̄) < lr(v̂) < K. From the proof of Step 6 of

Proposition 1, it follows that the optimal bid function b(v) = lr(v) for v ∈ [0, v̄),

and b(v) = K for higher v. Thus there is a jump from lr(v̄) to K at the value v̄.

Case 2. θ < θc. So lr(v̂(θ), θ,K) > K. On the other hand, we know that

lr(0, θ,K) = 0 < K. By continuity and monotonicity of lr(v), therefore, there is

a unique v̄ s.t. lr(v̄, θ,K) = K. So trivially,

u(v̄, lr(v̄), θ,K) = u(v̄, K, θ,K) A1

We claim that then, for every v < v̄, u(v, lr(v), θ,K) > u(v,K, θ,K).

For suppose not. Then for some v′ < v̄, u(v′, lr(v′), θ,K) ≤ u(v′,K, θ,K).

Differentiate both sides of this equation w.r.t. v.

Derivative of the LHS: Since there is a local optimum at lr(v′), the envelope

theorem implies that the derivative is equal to u1, the partial derivative w.r.t. the

first argument (evaluated at the bid lr(v′). Partially differentiating Eq.(2) gives

u1 = (1− θ) lr(v
′)

K
+ θ

(
lr(v′)
K

)2

< 1

because v′ < v̄ implies lr(v′) < lr(v̄) = K.

On the other hand, the RHS u(v′,K, θ,K) = v′ − K
2 (1 + θ

3), so the partial

derivative w.r.t. v equals 1.

So, v > v′ implies u(v, lr(v), θ,K) < u(v,K, θ,K). This contradicts Equation

A1.

Therefore, for v ∈ [0, v̄], u(v, lr(v), θ,K) ≥ u(K, θ,K). Thus the optimal bid

function b(v) equals the lower root lr(v) until this root equals K; and then stays

at K. So the bid function does not have any jump.

Case 3. θ = θc. So lr(v̂(θ), θ,K) = K, and therefore u((̂v), lr(v̂), θ,K) =

u(v̂, K, θ,K). We can then show that for every v < v̂, u(v, lr(v), θ,K) > u(v,K, θ,K).
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The proof is identical to that for the similar claim in Case 2. And rules out any

jump in the optimal bid function.

Proof of Proposition (3). Suppose an agent with intrinsic value v bids

against a random draw from U [0,K]. In the proof, we keep the value v and

the loss aversion parameter θ fixed. We treat K as a parameter, and study the

response of the optimal bid b to a change in K. For the duration of this proof,

rename the utility function u(v, b, θ,K) as u(b,K) for short, keeping v and θ fixed

and suppressing them. Use the notations ui and uij for the first and second partial

derivatives of u(b,K).

Suppose v ∈ (0, v̄), so that the optimal bid equals the lower root of the

quadratic FOC (Eq. 4 right now). Call this optimal bid b(K), as it is parametrized

by K. We show that b′(K) < 0.

Using the implicit function theorem on the first order condition u1(b,K) = 0,

we get b′(K) = −u12/u11. By local concavity at the optimal b, u11 < 0. So the

signs of b′(K) and u12 (evaluated at the optimal b) are the same. From the utility

function (Eq. (2)), we get the cross partial derivative

u12 =
−[v(1− θ)− b(1 + θ)]

K2
− 4θbv + 2θb2

K3

u12 < 0, therefore, if and only if

2θ
K
b2 +

[
4θv
K
− (1 + θ)

]
b+ v(1− θ) > 0 A2

Now, at the optimal bid b, notice that the FOC (Eq.(4)) is

θ

K
b2 +

[
2θv
K
− (1 + θ)

]
b+ v(1− θ) = 0

Comparing the LHS of this with the LHS of Eq.(A2) above, we see that the

inequality in A2 holds at the optimal bid b. So, u12 < 0, and therefore b′(K) < 0.

So, since K2 > K1, we have that for every v ∈ (0, v̄1), the optimal bid is lower

when K = K2 (Treatment 2), than under Treatment 1. Due to the form of the

continuous bid function, under Treatment 2, the optimal bid is lower than that
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under Treatment 1 for all v > 0 until the optimal bid function under Treatment 2

cuts the optimal bid function under Treatment 1 from below (at say vτ ).

Proof of Proposition (4). To prove the result, we first state and prove

the following lemma, that we then use. v̄ in the statement of the lemma is the

minimum value at which the optimal bid equals K: it equals K/(1 + θ).

Lemma 1 Let the competing distribution be uniform on [0,K]. Fix a value v ∈

(0, v̄). Let b(θ) denote the optimal bid when the value is v, when the loss aversion

parameter equals θ. Then b′(θ) < (=, >)0 according as v < (=, >)2
3K.

Proof of Lemma. Holding v and K fixed, write the utility function as

u(b, θ) =
v

K
(1− θ)b+

b2

K

(
θ(
v

K
− 1

2
)− 1

2

)
+

θb3

3K2

b(θ) is the solution to max{u(b, θ)|b ∈ [0,K]}. By the Implicit Function Theo-

rem, b′(θ) = −ubθ
ubb

, where on the right hand is a ratio of second partial derivatives.

Since ubb < 0 at the optimum (established earlier), the sign of b′(θ) is the same

as that of ubθ. We now sign ubθ; this depends on the value of v/K.

Note that

ubθ = (b/K)2 + (2(v/K)− 1)(b/K)− (v/K)

Suppose 0 < (v/K) < (1/2). So (b/K) < (v/K) (by Corollary 1, as (v/K) <

(2/3)); so (b/K)2 < (v/K) as well. It follows that ubθ < 0.

Next, we sign ubθ for the range (4(v/K)− 1) > 0, i.e. (v/K) > (1/4).

ubθ is a convex quadratic in (b/K) with real roots; the lower root is negative

and so irrelevant; the positive root is

b

K
=

1− (2v/K) +
√

4(v/K)2 + 1
2

Call this positive root R(v/K) for short. Because ubθ is a convex quadratic, it

follows that for positive values of (b/K), ubθ < (=, >)0 according as (b/K) < (=

, >)R(v/K).
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Note now that (v/K) = (2/3) solves the equation (v/K) = R(v/K); this

is established by a simple rearrangement of the equation (v/K) = R(v/K). At

the same time, Corollary 1 implies that for (v/K) = (2/3), the optimal bid b

satisfies b = v. So, for (v/K) = (2/3), (b/K) = R(b/K); so ubθ = 0. Next, if

(1/4) < (v/K) < R(v/K), a rearrangement of the second inequality establishes

that (v/K) < (2/3); so by Corollary 1, the optimal bid satisfies (b/K) < (v/K),

which is less than R(v/K). So, ubθ < 0. The reverse inequality, for (v/K) > (2/3),

follows similarly.

Proof of the Proposition. The argument is recursive: from the observed

population bid distributions for the two treatments, we can find a unique θ = θ̃

that will generate the bids from values. We then use θ̃ to find the unique value

distribution (unique on the interval [0,K2)) that generates the two bid distribu-

tions.

Let α be the quantile of the bid distribution for treatment 1 at which the bid

equals (2/3)K1. Call this bid b1α. From Corollary 1, this bid is equal to the value,

for Treatment 1 (i.e. for K = K1). So (2/3)K1 is the α-quantile of the distribution

of values; call this value vα. Since K2 > K1, vα < (2/3)K2. Lemma 1 shows that

for values less than (2/3)K2 in Treatment 2, b′(θ) < 0. So the lowest possible

bid at the value vα, for Treatment 2, over all admissible θ, occurs at the highest

such θ = θc; the bid equalling lr(vα, θc,K2). b(θ) is continuous by the Maximum

Theorem; so for any observed α-quantile bid b2α ≥ lr(vα, θc,K2) for Treatment 2,

there exists θ̃ such that b2α = lr(vα, θ̃,K2).

Moreover, because vα < (2/3)K2, Lemma 1 implies that b(θ) is strictly de-

creasing in θ; so the θ̃ at which it is optimal to bid b1α at the value vα is unique.

So, from our specifically chosen α-quantile, we have established that there is a

unique θ = θ̃ for which the observed α-quantile bids for both treatments b1α, b2α,

are optimal.

Having obtained θ̃, consider Treatment 2, which has the larger interval [0,K2]

for the competing distribution. The optimal bid function b(v, θ̃,K2) is strictly
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increasing for values in [0, K2

1+θ̃
); so the bid distribution for Treatment 2 can be

inverted in the standard way to get the value distribution in this interval.
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