
ISSN No. 2454 – 1427 
 

            CDE  
January 2016  

 

How risky is a random process?  

 

 

 

 

 

 

 

Sudhir A. Shah 
Email: sudhir@econdse.org 

Department of Economics 

Delhi School of Economics 
 
 

 

 

 

 

 

 

 

Working Paper No. 252 
 

http://www.cdedse.org/working-paper-frameset.htm 

 

 

 

 

 

 

CENTRE FOR DEVELOPMENT ECONOMICS 
DELHI SCHOOL OF ECONOMICS 

DELHI 110007 

 



How risky is a random process?

Sudhir A. Shah∗

January 13, 2016

Abstract

The riskiness of random processes is compared by (a) employing a
decision-theoretic equivalence between processes and lotteries on path-
spaces to identify the riskiness of the former with that of the latter, and
(b) using the theory of comparative riskiness of lotteries over vector
spaces to compare the riskiness of lotteries on a given path-space. We
derive the equivalence used in step (a) and contribute a new criterion
to the theory applied in step (b). The new criterion, involving a gener-
alized form of second order stochastic dominance, is shown to be valid
by establishing its equivalence to the standard decision-theoretic crite-
rion. We demonstrate its tractability via diverse economic applications
featuring risk embodied in random processes.

JEL classification: C02, D01, D63, D81
Key words: random processes, vector outcomes, comparative risk-

iness, generalized second order stochastic dominance

1 Introduction

The answer to the above question relies on the theory of comparative risk-
iness of lotteries. The cornerstone of this theory is the decision-theoretic
criterion (henceforth, DTC): one lottery over a set of outcomes is said to
be riskier than another one if every decision-maker with an admissible con-
cave (Bernoulli-von Neumann-Morgenstern) utility defined on the outcomes
derives at least as much expected utility from the latter as from the former.1

The comparative riskiness of random variables can be assessed by identi-
fying it with the comparative riskiness of their distributions on the real line
and assessing the latter using DTC or its characterizations in Rothschild
and Stiglitz [22]. This is a legitimate strategy because a decision-maker’s
expected utility is invariant with respect to the implied change of integrating
variable (cf. equation (1)).

∗Department of Economics, Delhi School of Economics, University of Delhi, Delhi
110007, India. Email: sudhir@econdse.org

1A concave utility is an abstraction of a risk averse utility (Arrow [1], Pratt [21]); see
Section 5.1 for the relationship between these notions in the context of this paper.
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The proliferation of economic models with risk embodied in random
processes (henceforth, processes) motivates the development of a theory for
comparing the riskiness of processes, which can be used to study the effects
of such risks on the endogenous variables of these models.

While the outcomes of a random variable are real numbers, the outcomes
of a process, namely its sample paths, are real-valued (possibly, even vector-
valued) functions over a time domain. Since these functions belong to a
path-space, which is a subset of a vector space, the strategy for comparing
the riskiness of processes must suitably generalize the strategy for comparing
the riskiness of random variables.

The first step of the strategy is to establish a duality, i.e., a decision-
theoretic equivalence, between processes and lotteries on path-spaces, so
that the riskiness of a process can be legitimately identified with that of the
lottery dual to it. This is done in Section 3. This duality allows seamless
translation between processes and lotteries on path-spaces.

Since we regard DTC as the touchstone for a valid comparison of risk-
iness, the second step is to compare the riskiness of the dual lotteries on a
path-space by using DTC or a criterion equivalent to it. Characterizations
of DTC are important, if only because the tractability of different, albeit
equivalent, criteria can vary with the applications. As most commonly used
processes have infinite time domains, their path-spaces are embedded in
various infinite-dimensional vector spaces. Therefore, a useful characteriza-
tion of DTC must hold for as general a class of infinite-dimensional vector
outcome spaces as possible. What is known about such characterizations?

The economics literature reveals no progress towards an answer since
the Euclidean space results of Russell and Seo [23]. The other source of
answers is the statistical literature on convex orders (surveyed in Mosler
and Scarsini [17], and more recently in Shaked and Shanthikumar [25], Sec-
tions 3.A, 3.E, 7.A and 7.E) and comparison of experiments (surveyed in
Le Cam [16] and Torgersen [29]). This literature yields the two classical
characterizations that are cited in Section 5.2 and stated in Appendix A.
Neither DTC nor its classical characterizations have found traction in eco-
nomic applications featuring random infinite-dimensional outcomes.

So, it is necessary to find a criterion that is equivalent to DTC in infinite-
dimensional settings and tractable in economic applications. Our main
result, Theorem 6.3, provides a criterion that meets both requirements.
This result characterizes DTC in terms of second order stochastic dominance
applied to the utility distributions generated by the given lotteries over
vector outcomes and the admissible utilities defined over these outcomes.
Given any real vector space, the characterization holds for every measurable
convex outcome space embedded in that vector space and every family of
bounded, concave and measurable utilities on the outcomes that satisfies an
easily verifiable closure property.

Special versions of this result require topological or ordering structure
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on the outcome space if the admissible utilities are to have continuity or
monotonicity properties (Corollary 6.4). Since all the admissible families of
utilities appearing in this literature satisfy the specified closure property,
the result characterizes many familiar versions of DTC in a unified manner.

In addition to our main result, Theorems 6.5-6.7 show that the vector
outcomes theory generalizes various key features of the Rothschild-Stiglitz
theory; for instance, comparisons of vector riskiness generate a partial order-
ing of the risks, imply mean-preservation and yield a comparison of the risk
premia. While the scalar versions of these results are familiar, the vector
versions are new, not merely because they hold for substantially more gen-
eral settings, but also because these settings force conceptual innovations;
see a synopsis of these results in Section 5.3 and details in Sections 6.2-6.4.

When faced with a problem involving processes, it is tempting to try to
finesse it by pathwise aggregating the sample paths, thereby deriving an ag-
gregate random variable from each process. Thereafter, one might identify
the comparative riskiness of processes with that of the corresponding ag-
gregate random variables, where the latter comparison uses the Rothschild-
Stiglitz theory. Theorem 6.8 shows that this ploy is illegitimate: for, ar-
guably, the largest class of vector outcome spaces that appear in economic
models, the ordering of the riskiness of vector outcome lotteries using DTC
is necessarily incongruent with the ordering of the riskiness of aggregate
outcome distributions using the Rothschild-Stiglitz theory.

Since Theorems 6.3-6.8 hold for lotteries over appropriate vector out-
come spaces, they necessarily hold for lotteries over appropriate path-spaces.
Using the duality result, the latter versions of these theorems are readily
translated into propositions regarding processes.

Finally, since our aim was to characterize DTC so as to facilitate ap-
plications, we demonstrate the tractability of the new criterion by using
it to compare riskiness in economic applications where risk is embodied in
processes. A typical economic application of the theory of comparative risk-
iness examines how variations in exogenously specified riskiness affect the
choices made by a decision-maker seeking to maximize expected utility. Such
decision-makers care about the riskiness of the primitive outcomes, namely
the sample paths, only insofar as it affects the relationship between their
decision and the distribution of the derived outcomes, namely the utilities.
Using the classical criteria in these applications requires the translation of
criteria based purely on the primitive outcomes into criteria based on the
derived outcomes. Instead, our criterion is easier to use in these problems
as it is based directly on the distributions of the derived outcomes. We
substantiate this claim in Section 7, where we use our criterion to identify
conditions under which the following results hold:

1. A bidder in a sealed-bid (first-price or second-price) auction will bid
more conservatively with greater riskiness of the random process de-
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termining his valuation of the prize.

2. A regulated utility, which is penalized if it fails to meet a random
demand flow over a period, will choose a higher capacity in response
to greater riskiness of the demand process.

3. A firm’s manager, who is incentivized to minimize stock-outs of its
product, will choose a larger production capacity to deal with greater
riskiness of the random orders process.

4. A risk averse investor will increase the risk-free component of his port-
folio in response to increased riskiness of the stream of returns gener-
ated by the risky asset.

5. A planner will provide more of a public good in response to greater
riskiness of the consumption allocations of the citizens.

6. The principal’s contribution in a team moral hazard situation increases
with greater riskiness of the effort levels chosen by the agents.

Such problems have hitherto been modeled with real-outcome risks, but
this surely was a concession to the available tool-kit, rather than an attempt
at verisimilitude. At one level, our results simply confirm intuitions derived
from the real outcomes theory. At another level, they use appropriate models
and tools to convert conjectures into theorems.

All the applications are modeled with risk embodied in a process as
the sole complication and other features pared down to be as elementary
as possible without sacrificing economic substance. For instance, all the
applications feature a real-valued decision variable. Applications featuring
multi-dimensional controls or game-theoretic considerations are beyond the
scope of this paper as their complexity demands longer dedicated treatments.

The contents of the sections not discussed above are as follows. Section 2
states our technical conventions. Section 4 recalls the Rothschild-Stiglitz
theory. Section 5 states the formalism underlying the vector outcomes theory
and uses it to catalog the relevant literature and our contributions to it. We
conclude in Section 8. Appendix A states the classical equivalence results.
Proofs of all results other than the main result are collected in Appendix B.

2 Notation and conventions

The following conventions shall apply throughout this paper.
¬P denotes the negation of proposition P . The subset relation ⊂ is used

in the weak sense. N is the set of natural numbers. The real line < is given
the Euclidean metric topology. A product of topological spaces is given the
product topology and a subset of a topological space is given the subspace
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topology. A topological space A is given the Borel σ-algebra B(A). For a
topological space A, the set of continuous functions f : A → < is denoted
by C(A). ∆(A) denotes the set of lotteries, i.e., countably additive prob-
ability measures, on a measurable space (A,A). The distribution function
corresponding to a lottery ν ∈ ∆(<) is given by F (., ν) = ν(−∞, .].

Every vector space is over the field <. Let (X,≥) be an ordered vector
space. For x, y ∈ X, we say x > y if x ≥ y and ¬y ≥ x. For O ⊂ X, we
say f : O → < is increasing (resp. strictly increasing, decreasing) if x, y ∈ O
and x > y implies f(x) ≥ f(y) (resp. f(x) > f(y), f(x) ≤ f(y)).

Consider f : A → < with A ⊂ <. f is said to be Ck if it is k-times
continuously differentiable for k ∈ N ∪{∞}. For k ∈ N , Dkf(x) is the k-th
derivative of f at x ∈ A. f(x+) (resp. f(x−)) is the right-hand (resp. left-
hand) limit of f at x ∈ A.

3 Duality of processes and lotteries

In this section, we show that a process is dual to a lottery on its path-
space and the expected utility derived from a process is identical to the
expected utility derived from its dual lottery. So, the problem of comparing
the riskiness of processes is decision-theoretically equivalent to the problem
of comparing the riskiness of their dual lotteries using DTC.

Given T ⊂ <, let <T be the set of functions x : T → <. <T is a vector
space given (x + y)(.) := x(.) + y(.) and (rx)(.) := rx(.) for x, y ∈ <T and
r ∈ <. A measurable space (O,O) is called a path-space if O ⊂ <T .2

Definition 3.1 A random process is a collection Y = (Ω,F , P ;T, y), where
(Ω,F , P ) is a probability space, T ⊂ < is the time domain and the function
y : T ×Ω→ < is such that y(t, .) is measurable for every t ∈ T . Each ω ∈ Ω
generates the sample path ŷ(ω) ∈ <T , given by ŷ(ω)(.) := y(., ω).

The next definition links processes to lotteries on path-spaces by requir-
ing ŷ to be measurable, i.e., by requiring it to be a random element, which
is the natural generalization of the notion of a random variable.

Definition 3.2 A process Y = (Ω,F , P ;T, y) is said to be admissible with
respect to a path-space (O,O) if ŷ(Ω) ⊂ O and ŷ : Ω → O is measurable.3

The image measure P ◦ ŷ−1 ∈ ∆(O) is called the distribution generated by
an admissible process Y on (O,O).

2Consider a more general path-space O ⊂ Y T where Y is a vector space. Since Y T is a
vector space, our main result will apply to O. However, we do not pursue this generality
and restrict attention to Y = < for simplicity and concreteness.

3For instance, it is shown in Shah [24] that various Wiener-related processes and a large
class of second order processes are admissible with respect to appropriate path-spaces.
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Given a path-space, we declare processes to be equivalent if they are ad-
missible with respect to it and generate the same distribution on it. Then,
the mapping of the resulting equivalence classes of processes to their respec-
tive distributions on the path-space is automatically injective. We now show
that, for an appropriate path-space, this mapping is also surjective.

Definition 3.3 Consider a path-space (O,O). Let e : T × O → < be the
evaluation function defined by e(t, x) = x(t). We say that (O,O) is admis-
sible if e(t, .) is measurable for every t ∈ T .

Theorem 3.4 If a path-space (O,O) is admissible and P ∈ ∆(O), then P
is the distribution of a process that is admissible with respect to (O,O).

So, if (O,O) is an admissible path-space, then the mapping of equivalence
classes of admissible processes to their respective distributions in ∆(O) is
bijective. Moreover, an admissible process is decision-theoretically equivalent
to its distribution on the path-space.

For the last claim, consider a process Y that is admissible with respect
to a path-space (O,O). If u : O → < is an integrable utility, then the change
of variable formula (Billingsley [4], Theorem 16.13) implies∫

Ω
P (dω)u ◦ ŷ(ω) =

∫
O
P ◦ ŷ−1(dx)u(x) (1)

i.e., expected utility is invariant across the dual representations of risk, where
the left-hand side and the right-hand side of (1) are the expected utilities
derived from the process and its distribution respectively.

The above-described decision-theoretic duality justifies the identification
of the riskiness of a process with the riskiness of its distribution.

Definition 3.5 Suppose (O,O) is a path-space and � is a relation that com-
pares the riskiness of lotteries in ∆(O). If processes Y1 = (Ω1,F1, P1;T, y1)
and Y2 = (Ω2,F2, P2;T, y2) are admissible with respect to (O,O), then we
say that Y1 is riskier than Y2 if P1 ◦ ŷ−1

1 � P2 ◦ ŷ−1
2 .

4 Real outcomes theory

As the real outcomes theory is the model for the vector outcomes theory
of comparative riskiness, the latter seeks to emulate the key features of the
former. In this section, we note these congruences and use them to interpret
some modeling choices made in the more general theory.

Consider a convex set O ⊂ < and lotteries µ, λ ∈ ∆(O). We say µR1λ if∫
O µ(dx) v(x) ≤

∫
O λ(dx) v(x) for every function v : O → < that is bounded,

measurable and concave. R1 is a special version of DTC (cf. Definition 5.3).
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We say µR2λ if µ and λ have the same mean and λ second order stochas-
tically dominates µ, i.e.,

∫
(−∞,y] dx [F (x, µ)− F (x, λ)] ≥ 0 for every y ∈ <.

We say µR3λ if λ and µ are the distributions of random variables f and
g respectively and the expectation of g conditional on f is equal to f almost
surely (cf. Definitions A.3 and A.4).

The main result of the Rothschild-Stiglitz theory is: if O is a convex
and compact subset of <, then R1, R2 and R3 are identical partial orders
(Rothschild and Stiglitz [22], Theorem 2). Reflexivity implies that “riskier
than” is meant in the weak sense. Incompleteness means that this theory
does not rationalize any cardinal measure of riskiness. The partial order
property is generalized to the vector outcomes setting in Theorem 6.5 and
the equivalence of R1 and R3 is generalized in Theorem A.5.

The definitions of R1 and R3 do not call for the existence or knowledge
of the means of µ and λ (cf. Definitions 5.3, A.3 and A.4), much less their
equality. Nevertheless, as is well-known, µR1λ (resp. µR3λ) implies that µ
and λ have the same mean (cf. Theorem 6.6).4

It is also known that the risk premium attached to a lottery by a strictly
increasing, concave and continuous utility increases with the riskiness of the
lottery (cf. Theorem 6.7).

There is no presumption in R1 that an admissible v must be monotonic;
Equation (2) and Footnote 3 in Rothschild and Stiglitz [22] affirm this ex-
plicitly (cf. Definition 5.3). If the outcomes are known to be agreeable
(resp. disagreeable) in a particular context, say monetary gains (resp. pain,
prison terms, pollution), then it is sensible for v to be increasing (resp. de-
creasing) in that context. Or, a risk averse Goldilocks may have a con-
cave utility that increases to a peak and then decreases. The absence of
a monotonicity postulate admits many interpretations of the outcomes and
the preferences. This agnosticism makes for a pure theory of comparative
riskiness as its interpretation is independent of any particular context.

Insisting that the utilities underlying R1 must be increasing restricts the
theory’s domain to risks that are sensibly reducible to “monetary” lotteries.
The monotonicity requirement also confounds a decision-maker’s attitude to
risk with a preference for “more”. To see this, consider lottery δ0 (resp. δ1)
that gives prize 0 (resp. 1) almost surely. Every increasing utility, whether
concave or otherwise, prefers δ1 to δ0. So, if the definition of R1 is amended
to require that an admissible v must be increasing, in addition to the other
requirements, then the amended criterion will declare δ0 to be riskier than
δ1. This unconvincing conclusion is driven purely by monotonicity and has
nothing to do with risk aversion or risk.

4The means exist as O is compact. To check their equality given µR1λ, set v = I and
v = −I, where I is the identity mapping on O. Given µR3λ and the underlying proba-
bility space (Ω,F , P ), let E be the expectation operator and let Efg be the conditional
expectation of g given f . Then,

∫
O
µ(dx)x =

∫
O
P ◦ g−1(dx)x =

∫
Ω
P (dω) g(ω) = Eg.

Similarly,
∫
O
λ(dx)x = Ef . Therefore,

∫
O
λ(dx)x = Ef = EEfg = Eg =

∫
O
µ(dx)x.
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In order to eliminate such anomalies, every version of R1 that insists on
increasing utilities also imposes mean-preservation as a prerequisite for com-
parable riskiness. This supplementary condition renders non-comparable
the riskiness of δ0 and δ1. R1 reaches the same conclusion by admitting all
concave utilities. Since admissible increasing and decreasing utilities imply
contradictory assessments of δ0 and δ1, their riskiness is non-comparable.

5 Vector outcomes theory

This section provides a formal synopsis of the theory of comparative riskiness
of lotteries with vector outcomes.

5.1 Definitions

Definition 5.1 An outcome space is a pair (X,O), where O is a set of out-
comes in a real vector space X. The theory uses the following specifications.

(1) O is a measurable convex subset of X.
(2) O is a convex subset of a topological vector space X.
(3) O is a convex, compact and metrizable subset of a locally convex

topological vector space X.
(4) O is a convex and compact subset of a separable Banach space X.
(5) O is a convex and compact subset of a Euclidean space X.
If an outcome space (X,O) satisfies specification (n) for n ∈ {1, . . . , 5},

then we say (X,O) belongs to Setting n and is admissible.

Given the conventions of Section 2, the settings are nested as follows:

Setting n ⊃ Setting n+ 1, n ∈ {1, . . . , 4} (2)

So, if a definition or a proposition is valid for outcome spaces in Setting
n ∈ {1, . . . , 4}, then it is also valid for outcome spaces in Setting n+ 1.

A subset of Setting n is specified by requiring X in that setting to be
an ordered vector space. The resulting ordered settings satisfy a nesting
scheme analogous to (2).

Consider an admissible outcome space (X,O). Let V be the set of
bounded, concave and measurable functions v : O → <. As v ∈ V is
bounded, v0 := inf v(O) ∈ < and v1 := sup v(O) ∈ <. Moreover, every
v ∈ V is integrable with respect to every µ ∈ ∆(O). If X is topological,
then let Vc (resp. Vsc) be the set of continuous (resp. upper semicontinuous)
functions in V . If X is ordered, then let V m (resp. V m

c , V m
sc ) be the set of

increasing functions in V (resp. Vc, Vsc).

Definition 5.2 Consider an admissible outcome space (X,O). V ′ ⊂ V
is said to be an admissible set of utilities with respect to (X,O) if it is
well-defined, given the specified properties of (X,O), i.e., it is possible to
determine for every v ∈ V , whether v ∈ V ′.
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For instance, if (X,O) is an admissible outcome space without topolog-
ical structure, then V is admissible with respect to (X,O), but Vc and Vsc
are not admissible.

Definition 5.3 Consider an admissible outcome space (X,O). Let V ′ ⊂ V
be a set of utilities that is admissible with respect to (X,O). Given µ, λ ∈
∆(O), we say

(1) µ �V ′1 λ if
∫
O µ(dx) v(x) ≤

∫
O λ(dx) v(x) for every v ∈ V ′, and

(2) µ �V ′2 λ if
∫
(−∞,y] dx

[
F (x, µ ◦ v−1)− F (x, λ ◦ v−1)

]
≥ 0 for all v ∈

V ′ and y ∈ <.

Relation �V ′1 is a version of DTC. The statement µ �V ′2 λ means that
the utility distribution λ ◦ v−1 second order stochastically dominates the
utility distribution µ ◦ v−1 for every admissible utility v ∈ V ′.

We end this section by relating concavity and risk aversion in the context
of the above formalism. Given an admissible outcome space (X,O), consider
a bounded and measurable utility v : O → <. Utility v is said to be risk
averse if v(mµ) ≥

∫
O µ(dx) v(x) for every µ ∈ ∆(O), where mµ ∈ O denotes

“the mean of µ”. While
∫
O µ(dx) v(x) is well-defined and finite even in

Setting 1, verification of risk aversion requires the definition and existence
of a unique mµ ∈ O.

If (X,O) belongs to Setting 5 withX = <n andmµ := (
∫
O µ(dx)πi(x))ni=1

where πi : <n → < is the i-th projection mapping, then mµ has the requisite
properties and v is risk averse if and only if v ∈ V (Perlman [19], Proposi-
tion 1.1). More generally, our results in Section 6.3 point to the Pettis (or
weak) mean as the appropriate definition of mµ in Setting 3. In this setting,
if mµ is the Pettis mean and v is upper semicontinuous, then mµ has the
requisite properties (Theorem 6.6) and v is risk averse if and only if v ∈ Vsc
(Perlman [19], Theorem 3.10). Settings 1 and 2 lack the structure to ensure
that mµ has the requisite properties. Therefore, in these general settings,
concavity serves as an abstract representation of risk aversion.

5.2 The known results

Theorem A.2 (Blackwell [5], [6], Cartier, Fell and Meyer [7], Hardy, Little-
wood and Pólya [12], Sherman [26], Stein [27], Strassen [28]) in Appendix A
shows that �Vc1 =�3 for outcome spaces in Setting 3, where �3 refers to the
existence of an appropriate dilatation on O.

Theorem A.5 (Blackwell [5], [6], Sherman [26], Stein [27], Strassen [28])
in Appendix A shows that �Vc1 =�4 for outcome spaces in Setting 4, where
�4 is the vector outcome generalization of R3.

It is also known that �V
m
sc

1 =�V
m
sc

2 for outcome spaces in Setting 5 (Russell
and Seo [23], Remark 1). However, this result has two limitations.

First, as noted in Section 4, the monotonicity condition on the utilities in
V m
sc means that �V

m
sc

1 and �V
m
sc

2 cannot be interpreted as comparing riskiness
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unless their definitions are strengthened with supplementary conditions, say
“mean-preservation”. But, this raises the question: what is an appropriate
definition of the “mean” of a vector outcome lottery?

Second, even if supplementary restrictions modify �V
m
sc

1 and �V
m
sc

2 into
valid measures of riskiness, the restriction of the result to Setting 5 means
that it cannot be used to compare the riskiness of processes with infinite
time domains, which is our primary motivation.

Our results will resolve both these issues.

5.3 Summary of our theoretical results

Our main result is the omnibus Theorem 6.3: given an admissible setting
(X,O), if a set of functions V ′ ⊂ V is admissible with respect to (X,O) and
satisfies the “closure property”, then �V ′1 =�V ′2 . Corollary 6.4 interprets V ′

in this equality as various familiar admissible sets of utilities.
For outcome spaces in Setting 1, the equality holds for V ′ = V . While

relation �V1 is the broadest version of DTC and the verbatim extension

of R1, relation �V2 generalizes the Russell-Seo relation �V
m
sc

2 . This result
characterizes DTC in the most general possible setting.

For outcome spaces in Setting 2, the equality holds for V ′ ∈ {Vc, Vsc}.
Using (2) and setting V ′ = Vc, �Vc1 and �Vc2 are equal to �3 (resp. �4)

for outcome spaces in Setting 3 (resp. Setting 4). This extends the classical
characterizations in Theorems A.2 and A.5.

For all the above-mentioned settings and specifications of V ′, the rela-
tions �V ′1 and �V ′2 are equivalent ways to compare the riskiness of lotteries.

Given settings with ordering structure, the equality also holds for V ′ ∈
{V m, V m

c , V m
sc }. For instance, if (X,O) belongs to Setting 1 and X is or-

dered, then �Vm1 =�Vm2 . Moreover, if (X,O) belongs to Setting 2 and X is

ordered, then �V
m
c

1 =�V
m
c

2 and �V
m
sc

1 =�V
m
sc

2 , which substantially generalizes
the Russell-Seo result. For ordered settings, the relations based on mono-
tonic preferences cannot be interpreted as comparisons of riskiness, unless
their definitions are supplemented by Pettis mean-preservation.

We also derive the following three results that generalize the correspond-
ing results flowing from the Rothschild-Stiglitz theory.

For an outcome space (X,O) in Setting 1, Theorem 6.5 shows that �V1
imposes a partial order on the quotient set of equivalence classes generated
by a natural notion of identically risky lotteries in ∆(O). This generalizes
the Rothschild-Stiglitz result that R1 imposes a partial order on ∆(O).

For an outcome space in Setting 3, Theorem 6.6 shows that each lottery
must have a unique Pettis mean, and if one lottery is riskier than another
in terms of �Vc1 , then their Pettis means must be the same. So, Pettis
mean-preservation is a natural consequence of purely decision-theoretic con-
siderations when monotonicity is not imposed on admissible preferences.
This also suggests that the Pettis mean is the appropriate notion of the
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“mean” if mean-preservation is to be imposed as a supplementary restriction
in vector outcome settings. This result generalizes the Rothschild-Stiglitz
mean-preservation property derived in Footnote 4.

For an outcome space (X,O) in Setting 3, if X is ordered and one lottery
is riskier than another, then Theorem 6.7 shows that, for every continuous,
concave and strictly increasing utility, the set of risk premia associated with
the riskier lottery must be “greater than” the set of risk premia associated
with the less risky lottery.

We show in Theorem 6.8 that the need for a vector outcomes theory of
comparative riskiness cannot be finessed by using the real outcomes theory
to compare random aggregate outcomes. This issue is peculiar to the vector
outcomes theory and cannot arise in the real outcomes theory.

6 Our theoretical results

6.1 Equivalence

Let U be the set of functions u(., y) : < → <, where y ∈ < and u(., y) =
min{., y}. Each u ∈ U is increasing, concave, continuous and measurable.

Let (X,O) be an admissible setting and let V ′ ⊂ V be a set of functions
that is admissible with respect to (X,O). V ′ is said to be closed under U if
u ◦ v ∈ V ′ for all u ∈ U and v ∈ V ′.5

Remark 6.1 If (X,O) is an outcome space in Setting 1, then V is closed
under U ; if X is an ordered vector space, then V m is closed under U . If
(X,O) is in Setting 2, then Vc and Vsc are closed under U ; if X is an ordered
vector space, then V m

c and V m
sc are closed under U .

Next, we perform an elementary calculation leading to our main result.

Lemma 6.2 Let (O,O) be a measurable space, y ∈ <, u(., y) ∈ U and µ ∈
∆(O). If v : O → < is measurable and bounded, then

∫
O µ(dx)u(v(x), y) =

y −
∫

(−∞,y] dxF (x, µ ◦ v−1).

Proof. By changing variables,
∫
O µ(dx)u(v(x), y) =

∫
< µ ◦ v−1(dx)u(x, y) =∫

(−∞,v1] u(x, y) dF (x, µ ◦ v−1). As F (., µ ◦ v−1) = 0 on (−∞, v0) and F (., µ ◦
v−1) = 1 on [v1,∞), integrating by parts yields

∫
(−∞,v1] u(x, y) dF (x, µ ◦

v−1) = u(v1, y)−
∫

(−∞,v1] F (x, µ ◦ v−1) du(x, y). Note that

u(t, y)− u(s, y) =

{
t− s, if s ≤ t ≤ y
0, if y ≤ s ≤ t

5The following characterization of such a V ′ might be of interest although we do not
use it; see Howie [13] for these concepts. Clearly, (U, ◦) is a semigroup. Each f ∈ U yields
the transformation Tf : V ′ → <O by Tf (v) = f ◦v. Let T = {Tf | f ∈ U}. Given f, g ∈ U ,
let Tf ∗Tg = Tf◦g. As (U, ◦) is a semigroup, it is easily verified that (T , ∗) is a semigroup.
Then, V ′ ⊂ V is closed under U if and only if (V ′, (T , ∗)) is a transformation semigroup.
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For y < v1, u(v1, y)−
∫

(−∞,v1] F (x, µ◦v−1) du(x, y) = y−
∫

(−∞,y] F (x, µ◦
v−1) du(x, y)−

∫
(y,v1] F (x, µ ◦ v−1) du(x, y) = y −

∫
(−∞,y] dxF (x, µ ◦ v−1).

For y ≥ v1, u(v1, y)−
∫
(−∞,v1] F (x, µ◦v−1) du(x, y) = v1−

∫
(−∞,y] F (x, µ◦

v−1) du(x, y) +
∫

(v1,y] F (x, µ ◦ v−1) du(x, y) = v1 −
∫

(−∞,y] dxF (x, µ ◦ v−1) +

y − v1 = y −
∫
(−∞,y] dxF (x, µ ◦ v−1).

This yields our main result.

Theorem 6.3 Consider an admissible setting (X,O) and V ′ ⊂ V that is
admissible with respect to (X,O). If V ′ is closed under U , then �V ′1 =�V ′2 .

Proof. Consider µ, λ ∈ ∆(O). Suppose V ′ ⊂ V is closed under U .
Let µ �V ′1 λ, v ∈ V ′ and y ∈ <. Then, u(., y) ∈ U . As V ′ is closed under

U , u(v(.), y) ∈ V ′. Using Lemma 6.2, we have
∫

(−∞,y] dx [F (x, µ ◦ v−1) −
F (x, λ ◦ v−1)] =

∫
O λ(dx)u(v(x), y)−

∫
O µ(dx)u(v(x), y) ≥ 0. So, µ �V ′2 λ.

Conversely, let µ �V ′2 λ and v ∈ V ′. Setting y = v1 in Lemma 6.2,∫
O λ(dx) v(x)−

∫
O µ(dx) v(x) =

∫
O λ(dx)u(v(x), v1)−

∫
O µ(dx)u(v(x), v1) =∫

(−∞,v1] dx [F (x, µ ◦ v−1)− F (x, λ ◦ v−1)] ≥ 0. Therefore, µ �V ′1 λ.

This result yields a category of concrete equivalence results regarding
the various criteria for comparing vector outcome riskiness.

Corollary 6.4 Consider an outcome space (X,O).
(A) If it is in Setting 1, then �V1 =�V2 ; if X is an ordered vector space,

then we also have �Vm1 =�Vm2 .
(B) If it is in Setting 2, then �Vc1 =�Vc2 and �Vsc1 =�Vsc2 ; if X is an ordered

vector space, then we also have �V
m
c

1 =�V
m
c

2 and �V
m
sc

1 =�V
m
sc

2 .
(C) If it is in Setting 3, then �Vc1 =�Vc2 =�3.
(D) If it is in Setting 4, then �Vc1 =�Vc2 =�3=�4.
(E) If it is in Setting 5 and X = <, then R1 = R2 = R3 =�V1 =�V2 .

Proof. (A)-(B) Combine Remark 6.1 and Theorem 6.3.
(C) Combine (B) and Theorem A.2.
(D) Combine (C) and Theorem A.5.
(E) Clearly, R1 =�V1 in this setting. Now combine (A) and Theorem 2

in Rothschild and Stiglitz [22].

6.2 Partial ordering

It is well-known that �V1 yields a partial order on ∆(O) for an outcome space
(X,O) in Setting 5 with X = <. We generalize this result to Setting 1. The
generalization is not verbatim, but such that it reduces to the classical result
in the appropriate setting.

Consider an admissible outcome space (X,O). We say that µ, λ ∈ ∆(O)
are risk-equivalent, denoted by µ ∼ λ, if µ◦v−1 = λ◦v−1 for every v ∈ V , i.e.,

12



the utility distributions µ◦v−1 and λ◦v−1 are identical for every v ∈ V . This
is a sensible notion because risk-equivalent lotteries are identical for every
risk averse decision-maker. The quotient set ∆(O)/∼ consists of equivalence
classes [µ] = {µ′ ∈ ∆(O) | µ′ ∼ µ} for µ ∈ ∆(O). Clearly, for µ, λ ∈ ∆(O),
µ �V1 λ if and only if µ′ �V1 λ′ for all µ′ ∈ [µ] and λ′ ∈ [λ]. Consequently,
for µ, λ ∈ ∆(O), we say [µ] � [λ] if µ �V1 λ.

Theorem 6.5 If (X,O) is an outcome space in Setting 1, then � is a partial
order on ∆(O)/∼.

Consider an outcome space (X,O) in Setting 5 with X = <. Then, the
identity function I ∈ V ; this holds only when X = <. If λ ∈ [µ], then
µ ∼ λ. Consequently, µ = µ ◦ I−1 = λ ◦ I−1 = λ. So, every equivalence
class in ∆(O)/∼ is a singleton set. Thus, in the Rothschild-Stiglitz setting,
� reduces to �V1 and Theorem 6.5 reduces to the classical result.

Consider an outcome space (X,O) in Setting 1, where O is a path-space.
Using Definition 3.5 and Theorem 6.5, it follows that � also induces a partial
order on the quotient set consisting of equivalence classes of processes ad-
missible with respect to (O,O), where processes are declared to be equivalent
if their distributions are risk-equivalent.

6.3 Mean-preservation

It was noted in Footnote 4 that µR1λ implies that µ and λ have the same
real mean. This property can be generalized very substantially to a relation
representing DTC in Setting 3.

Consider an outcome space (X,O) in Setting 3. The problems in doing
the generalization are: (a) to define the mean of µ ∈ ∆(O), i.e., to give
meaning to the vector integral mµ :=

∫
O µ(dx)x, (b) show that mµ exists,

and (c) show that it is unique.
Let X∗ be the set of continuous linear functionals on X. We say that

mµ ∈ X is a Pettis mean of µ ∈ ∆(O) if h(mµ) =
∫
O µ(dx)h(x) for every

h ∈ X∗. The vector mµ is the Pettis integral (Pettis [20]) of the identity
function on O, which may also be denoted by

∫
O µ(dx)x.

For instance, if X = <n, then the projections {π1, . . . , πn} are a basis for
X∗ and mµ is the familiar coordinate-wise mean; if n = 1, then mµ coincides
with the familiar (strong) mean

∫
O µ(dx)x.

The following is a generalized mean-preservation property.

Theorem 6.6 If (X,O) is an outcome space in Setting 3, then
(A) every lottery µ ∈ ∆(O) has a unique Pettis mean mµ ∈ O, and
(B) if µ, λ ∈ ∆(O) and µ �Vc1 λ, then mµ = mλ.

This result has implications for risks embodied in processes.
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Consider an outcome space (X,O) in Setting 3, where (O,O) is a path-
space with O ⊂ X ⊂ <T . Let Y = (Ω,F , P ;T, y) be an admissible process
with respect to (O,O). Then, ŷ(Ω) ⊂ O, ŷ : Ω → O is measurable and
P ◦ ŷ−1 ∈ ∆(O) is the distribution of Y. The mean of Y is defined to be the
Pettis mean mP◦ŷ−1 .6

Suppose Yi = (Ωi,Fi, Pi;T, yi) is an admissible process with respect to
(O,O) for i ∈ {1, 2}. Using Theorem 6.6, Yi has a unique mean mPi◦ŷ−1

i
∈ O

for i ∈ {1, 2}. If Y1 is riskier than Y2, by which we mean P1 ◦ ŷ−1
1 �Vc1 P2 ◦

ŷ−1
2 , then mP1◦ŷ−1

1
= mP2◦ŷ−1

2
. We conclude that processes with comparable

riskiness have identical means.

6.4 Risk premia

We now relate the riskiness of lotteries to their risk premia in Setting 3. By
Theorem 6.6, every µ ∈ ∆(O) has a Pettis mean mµ ∈ O. Given v ∈ V , the
set of risk premia corresponding to lottery µ ∈ ∆(O) is π(v, µ) = {π ∈ X |
mµ − π ∈ O ∧ v(mµ − π) =

∫
O µ(dx) v(x)}.

Given an ordered vector space (X,≥), we say that A ≥∗ B for nonempty
sets A,B ∈ 2X if ¬a < b for all a ∈ A and b ∈ B.

Theorem 6.7 Suppose (X,O) is an outcome space in Setting 3 and (X,≥)
is an ordered vector space. If µ, λ ∈ ∆(O) and µ �Vc1 λ, then π(v, µ) ≥∗
π(v, λ) for every strictly increasing function v ∈ Vc.

Specializing this result by setting X = <, we have the familiar result
that π(v, µ) and π(v, λ) are singleton real numbers and π(v, µ) ≥ π(v, λ).

Consider an outcome space (X,O) in Setting 3, where (X,≥) is an or-
dered vector space and (O,O) is a path-space with O ⊂ X ⊂ <T . Let
Y = (Ω,F , P ;T, y) be an admissible process with respect to (O,O). Given
v ∈ V , the set of risk premia corresponding to Y is π∗(v,Y) := π(v, P ◦ ŷ−1).

If Yi = (Ωi,Fi, Pi;T, yi) is an admissible process with respect to (O,O)
for i ∈ {1, 2} and Y1 is riskier than Y2, i.e., P1 ◦ ŷ−1

1 �Vc1 P2 ◦ ŷ−1
2 , then

π∗(v,Y1) ≥∗ π∗(v,Y2) for every strictly increasing function v ∈ Vc.

6.5 Aggregation

The theory developed above is sufficient for comparing the riskiness of vector
outcome lotteries. But, is it necessary?

Consider an admissible setting (X,O). One might attempt to finesse the
problem of comparing the riskiness of lotteries in ∆(O) as follows. First,
convert vector outcomes into real outcomes using a measurable aggregator

6The Pettis mean may have a pointwise representation in this case. For t ∈ T , if the
evaluation e(t, .) : X → < is continuous, then e(t, .) ∈ X∗, and consequently, mP◦ŷ−1(t) =
e(t,mP◦ŷ−1) =

∫
O
P ◦ ŷ−1(dx) e(t, x) =

∫
Ω
P (dω) e(t, ŷ(ω)) =

∫
Ω
P (dω) y(t, ω).
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a : O → <. Given an interval B ⊃ a(O), aggregation yields the distributions
{µ ◦ a−1 ∈ ∆(B) | µ ∈ ∆(O)}. Second, for µ, λ ∈ ∆(O), assert that µ is
riskier than λ if and only if µ ◦ a−1R1λ ◦ a−1, where R1 is the Rothschild-
Stiglitz version of DTC defined over ∆(B).

Treating the assertion as a postulate merely bypasses the original prob-
lem by fiat. It is a valid proposition if and only if µ �V1 λ is equivalent to
µ◦a−1R1λ◦a−1 for all µ, λ ∈ ∆(O). Given any aggregator satisfying a very
mild condition, this equivalence does not hold.

Theorem 6.8 Consider an outcome space (X,O) in Setting 3. If a : O → <
is measurable and not injective, then there exist µ, λ ∈ ∆(O) such that
µ ◦ a−1R1λ ◦ a−1, λ ◦ a−1R1µ ◦ a−1, ¬µ �Vc1 λ and ¬λ �Vc1 µ.

As Vc ⊂ V , ¬µ �Vc1 λ and ¬λ �Vc1 µ also imply ¬µ �V1 λ and ¬λ �V1 µ.
As aggregation per se involves compression and loss of information, the
aggregator being non-injective is an unexceptionable and mild restriction.

Not only does aggregation necessarily yield an incorrect comparison of
vector outcome riskiness, it also eliminates interesting substantive aspects
of the problem.

For instance, in the problem studied in Section 7.6, aggregation of out-
comes would mean resorting to a representative agent and a composite good,
thereby suppressing substantive features such as the nature of an agent’s
preference over allocation vectors and the nature of the planner’s preference
over profiles of individual utilities and allocations.

Another example is a model where a stream of returns is replaced by
a single number, possibly the stream’s present value. This compression of
outcomes would rob the model of various features of the returns process
that could be relevant for preferences, such as volatility, the maximum and
minimum processes and various passage times.

7 Applications

We demonstrate in Sections 7.2-7.7 that the theory developed in Section 6
can be used to study a variety of economic applications involving risk em-
bodied in processes. The applications use Theorems 7.1 and 7.2 to predict
how a decision-maker’s behavior varies with the riskiness of vector outcomes.
Theorem 7.1 generalizes an analogous result in Diamond and Stiglitz [8].

7.1 Comparative statics

Consider an admissible outcome space (X,O), v ∈ V with v0 < v1, and a
family of lotteries {µ(r) ∈ ∆(O) | r ∈ <} where riskiness increases with
r ∈ [0, 1], i.e., r1, r2 ∈ [0, 1] and r2 > r1 implies µ(r2) �V2 µ(r1).
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Let H : <2 → < and h : <2 → <+ satisfy H(x, r) = F (x, µ(r) ◦ v−1) =∫
(−∞,x] dy h(y, r) for all (x, r) ∈ <2. Clearly, H(v0, r) = 0 and H(v1, r) = 1

for every r ∈ <.
Consider u : <2 → < and C = [a, b] ⊂ < with a < b. C is the decision-

maker’s choice space. If x ∈ O is the random outcome and the decision-
maker chooses c ∈ C, then the resulting utility is u(v(x), c). Define U :
<2 → < by U(r, c) =

∫
O µ(r)(dx)u(v(x), c). Clearly, U(r, c) =

∫
[v0,v1] µ(r) ◦

v−1(dx)u(x, c) =
∫

[v0,v1] u(x, c) dH(x, r) =
∫

[v0,v1] dxh(x, r)u(x, c). If µ(r) is
the lottery generating the random outcome and the decision-maker chooses
c ∈ C, then U(r, c) is the expected utility.

Theorem 7.1 Suppose (X,O), v, {µ(r) ∈ ∆(O) | r ∈ <}, H, h, C, u and
U are as defined above. If

(a) H is C1 and h is C2,
(b) u is C2; D22u < 0 on [v0, v1]× (a, b); D21u(., c) is C1 for every c ∈ C;

and D21u(v1, .) = 0, and
(c) c : [0, 1] → (a, b) satisfies U(r, c(r)) ≥ U(r, c) for every (r, c) ∈

[0, 1]× C,
then c is differentiable and D211u ≥ 0 (resp. ≤ 0) implies Dc ≥ 0

(resp. ≤ 0).

The following is a specialized version of Theorem 7.1.

Theorem 7.2 Consider the set-up of Theorem 7.1 with u(x, c) = cf(x) −
e(c). If (b) is replaced by

(b′) f is C2 and e is twice differentiable, with D2f ≤ 0, Df(v1) = 0 and
D2e > 0,

then Dc(r) ≤ 0.

In order to avoid repetition of the above formalism, we assert here that
all the applications in Sections 7.2-7.7 will satisfy the hypotheses of Theo-
rem 7.1, and in some cases, Theorem 7.2. Most hypothesized properties will
simply be postulated, but others will be derived from the specific structure
of each problem.

7.2 Auctions with valuation risk

We predict the behavior of bidder 1 (henceforth, “the buyer”) in first-price
and second-price sealed bid auctions when the buyer’s valuation of the prize
is determined by a risky vector outcome. For concreteness, let the prize be
a natural resource concession and let the risky outcomes refer to the sample
paths of a process of returns from the concession; by Theorem 6.8, such
vector risks cannot be legitimately reduced to aggregate real risks.

Consider an admissible outcome space (X,O) where (O,O) is an admis-
sible path-space. For the parameter r ∈ [0, 1], let the prize yield a random
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process Y(r) = (Ω,F , P (r);T, y) that is admissible with respect to (O,O).
Let µ(r) ∈ ∆(O) be the distribution generated by Y(r).

Given x ∈ O, let f ◦ v(x) be the buyer’s gross payoff, where v ∈ V and f
satisfies the conditions listed in Theorem 7.2.7 Given r ∈ [0, 1], the buyer’s
expected gross payoff, conditional on winning the prize, is

∫
O µ(r)(dx) f ◦

v(x). If the buyer’s probability of winning the prize is c ∈ C := [0, 1], then
the buyer’s expected gross payoff is c

∫
O µ(r)(dx) f ◦ v(x). Let e(c) be the

minimum expected cost of bidding to ensure a minimum winning probability
c. The buyer’s expected net payoff from choosing c is

∫
O µ(r)(dx)u(v(x), c),

where u(v, c) = cf(v) − e(c). Given r ∈ [0, 1], let c(r) ∈ C maximize∫
O µ(r)(dx)u(v(x), .). If e satisfies the conditions of Theorem 7.2, then
Dc(r) ≤ 0, i.e., greater riskiness of the outcome induces the buyer to choose
a lower winning probability. It only remains to derive e and show that it
satisfies the conditions of Theorem 7.2.

Given bids (y2, . . . , yn) by the other bidders, let y∗ = max{y2, . . . , yn}.
The buyer wins the prize by bidding b if and only if y∗ ≤ b; for simplicity,
we break ties in favor of the buyer. If the buyer wins, then he pays b in
a first-price auction and y∗ in a second-price auction; otherwise, the buyer
pays nothing.

Let G be the distribution function of y∗ with 0 ≤ β0 < β1 < ∞, where
β0 = supG−1({0}) and β1 = inf G−1({1}); naturally, G is derived from the
buyer’s belief about the bidding behavior of the other bidders. If the buyer
bids b ∈ <, then he wins with probability G(b). Define b : C → < by

b(c) =

{
0, if c = 0
inf G−1([c, 1]), if c ∈ (0, 1]

Consider c ∈ (0, 1]. G−1([c, 1]) is bounded below by 0. As G is right-
continuous, G−1([c, 1]) is closed in <. So, b(c) ∈ G−1([c, 1]), i.e., G(b(c)) ≥ c.
If b < b(c), then G(b) < c. Thus, b(c) is the lowest bid by the buyer that
implements c, i.e., yields a winning probability greater than or equal to c.

Lemma 7.3 The function b is nonnegative, bounded, increasing, measur-
able and left-continuous.

There is a simple duality between G and b.

Lemma 7.4 The function b (resp. G) is continuous if and only if G (resp.
b) is strictly increasing on [β0, β1] (resp. C).

If the buyer bids b(c), then the implied expected cost is

g(c) =

{
b(c)G(b(c)), for the first-price auction∫

[0,b(c)] y dG(y), for the second-price auction

7Examples of v include v(x) = inf x(T ) and v(x) =
∫
T
dt e−δtψ ◦ x(t) where ψ : < → <

is concave. The former represents a buyer who is concerned with downside risk while the
latter represents a buyer with impatience parameter δ.

17



Using Lemma 7.3, g : C → < is nonnegative, bounded and increasing.
Therefore, it is integrable. In general, g is neither continuous, nor strictly
increasing, nor convex. For instance, let G = 1[1,∞) on <. Then, b =
1(0,1] on C. Consequently, g = 1(0,1] on C for both auction forms, which is
discontinuous and not strictly increasing. As g(1/2) = 1 > 1/2 = g(1)/2 +
g(0)/2, g is not convex. However, g is more regular in some circumstances.

Lemma 7.5 If G is strictly increasing on [β0, β1] and continuous, then g is
continuous for the first-price and the second-price auctions.

While g(c) is the least expected cost of implementing c with a determin-
istic bid, namely b(c), the buyer may reduce the expected cost by randomly
implementing c. This amounts to picking a winning probability by using a
lottery over C with mean c. The randomization has no effect on the buyer’s
gross payoff as it is linear in c. We now derive the random implementation
of c that minimizes the expected cost of doing so and show that the resulting
cost function e : C → < satisfies the conditions of Theorem 7.2.

Suppose the buyer chooses a lottery λ ∈ ∆(C). The resulting expected
winning probability is mλ :=

∫
C λ(dx)x and the expected cost is L(λ) :=∫

C λ(dx) g(x). As g is nonnegative and bounded, so is L. The set of random
implementations of c is ∆(C, c) = {λ ∈ ∆(C) | mλ = c}, while e(c) :=
inf{L(λ) | λ ∈ ∆(C, c)} is the minimum expected cost of implementing c.
Deriving e is a straightforward matter in special circumstances.

Suppose g is convex. Consider c ∈ C and λ ∈ ∆(C, c). As g is convex,
g(c) = g(mλ) ≤

∫
C λ(dx) g(x) = L(λ). So, g(c) ≤ e(c). Since δc ∈ ∆(C, c),

we have e(c) ≤ L(δc) = g(c). Thus, e = g.
Suppose g is continuous. As C is a compact metric space, so is ∆(C)

when given the weak* topology (Parthasarathy [18], Theorem II.6.4); see
Footnote 10 for more on this topology. By the definition of this topology,
L is continuous. If ∆(C, c) is compact, then there exists λ ∈ ∆(C, c) such
that e(c) = L(λ). To show that ∆(C, c) is compact, it suffices to show that
it is a closed subset of ∆(C). Let λ ∈ ∆(C) be an accumulation point of
∆(C, c). Then, there is a sequence (λn) ⊂ ∆(C, c) converging to λ. As the
identity mapping on C is continuous, mλ = limnmλn = c. So, λ ∈ ∆(C, c)
and ∆(C, c) is a closed subset of ∆(C), as required.

However, as g may be non-convex and discontinuous, the above argu-
ments do not suffice. A general approach is required to derive e without
relying on supplementary assumptions regarding g.

The general approach replaces ∆(C) with the larger set ∆(C)∗ consisting
of finitely additive lotteries on C. This change has to be accompanied by
other modifications: the integrals in the definitions of mλ and L(λ) are
now interpreted as Dunford-Schwartz integrals for λ ∈ ∆(C)∗ and we set
∆(C, c)∗ := {λ ∈ ∆(C)∗ | mλ = c} and e(c) := inf{L(λ) | λ ∈ ∆(C, c)∗}.8 A

8Since ∆(C) ⊂ ∆(C)∗, we have ∆(C, c) ⊂ ∆(C, c)∗. Dunford-Schwartz integrals (Dun-
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simple argument shows that e(c) = inf{L(λ) | λ ∈ ∆(C)∗ ∧ mλ ≥ c}.9

Lemma 7.6 If e(c) = inf{L(λ) | λ ∈ ∆(C, c)∗} for c ∈ C, then
(A) e(c) = L(λ) ∈ < for some λ ∈ ∆(C, c)∗, and
(B) e : C → < is nonnegative, bounded, increasing, convex, continuous

on (0, 1) and twice differentiable Lebesgue almost everywhere.

So, e is well-defined and well-behaved as per the requirements of Theo-
rem 7.2. Hence, Dc(.) ≤ 0 Lebesgue almost everywhere on [0, 1].

7.3 Size of regulated utility

Consider an electric utility that is required by the regulator to meet the
random demand flow over the period T = [0, 1]. Failure to do so attracts a
penalty. The firm chooses the instantaneous production capacity at time 0,
which cannot be adjusted thereafter. Its revenue from the sale of electricity
and its variable cost are internalized by the regulator via a transfer of the
net amount à la Laffont and Tirole [14]. In addition, the firm receives
a sufficiently large lump-sum return for participating in this arrangement.
Given this set-up, the firm chooses capacity to minimize the sum of the fixed
cost and the expected penalty. We show that the chosen capacity increases
with the riskiness of the demand process.

We begin with the formal set-up of the firm’s problem. Let X = C(T ).
Given γ > 0, let O be a convex subset of X with 0 ∈ O and x(T ) ⊂ [0, γ]
for every x ∈ O. The demand for electricity is generated by the random
process Y(r) = (O,B(O), µ(r);T, e), where e : T ×O → < is the evaluation
function. So, e(t, x) = x(t) ∈ [0, γ] is the instantaneous demand at time t
generated by the continuous sample path x. The distribution induced by
Y(r) on its sample paths is µ(r), with the interpretation that its riskiness
increases with parameter r ∈ [0, 1].

Let C = [a, b] be the set of capacity choices with a ∈ (0, γ). Given a
demand path x ∈ O and capacity c ∈ C, w(x) = supx(T ) is the largest in-
stantaneous demand over T and max{x(t)−c, 0} is the instantaneous deficit
at time t. So, the largest instantaneous deficit over T is supt∈T max{x(t)−
c, 0} = max{supx(T )− c, 0} = max{w(x)− c, 0}.

Suppose the firm pays a penalty based on the largest instantaneous
deficit over T . Given a demand path x ∈ O and capacity c ∈ C, the penalty
is P (max{w(x) − c, 0}), where P : < → < is a C3 function with P (x) = 0
for x ≤ 0 and DP,D2P,D3P ≥ 0. Thus, idle capacity is neither rewarded,

ford and Schwartz [10], Chapter III) are defined with respect to finitely additive lotteries.
9Clearly, e(c) ≥ inf{L(λ) | λ ∈ ∆(C)∗ ∧ mλ ≥ c}. Consider λ ∈ ∆(C)∗ with

mλ > c ≥ 0. As c/mλ < 1, h(x) = xc/mλ yields the function h : C → C. It follows that
λ ◦ h−1 ∈ ∆(C)∗ and

∫
C
λ ◦ h−1(dy) y =

∫
C
λ(dx)h(x) = c. Thus, λ ◦ h−1 ∈ ∆(C, c)∗

and L(λ ◦ h−1) =
∫
C
λ ◦ h−1(dy) g(y) =

∫
C
λ(dx) g ◦ h(x) ≤

∫
C
λ(dx) g(x) = L(λ) as g is

increasing and h(x) ≤ x for every x ∈ C. So, e(c) ≤ inf{L(λ) | λ ∈ ∆(C)∗ ∧ mλ ≥ c}.
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nor penalized, and penalties increase in severity with the maximum instan-
taneous deficit. Let S : < → < generate the cost S(c) of setting-up capacity
c ∈ C. Suppose S is C3 and D2S > 0.

Given r ∈ [0, 1], suppose capacity c = c(r) ∈ (a, b) minimizes the firm’s
expected cost

∫
O µ(r)(dx)P (max{w(x)−c, 0})+S(c) over C. We show that,

if r1, r2 ∈ [0, 1] and r1 > r2, then c(r1) ≥ c(r2).
We first justify referring to Y(r) as a process. Since X and O do not have

measurability structure, we first endow X with the compact-open topol-
ogy. As T is compact, this topology coincides with the topology of uni-
form convergence (Dugundji [9], Theorem XII.8.2). By Theorem XII.2.4
in Dugundji [9], e is continuous. Consequently, e(t, .) is continuous, and
therefore Borel measurable, for every t ∈ T . So, Y(r) is indeed a process.

It is easily verified that w : O → < is convex and bounded. For every
α ∈ <, w−1((α,∞)) = ∪t∈T {x ∈ O | x(t) > α} = ∪t∈T {x ∈ O | e(x, t) >
α} = ∪t∈T e(., t)−1((α,∞)) is open in O as e is continuous. Thus, w is lower
semicontinuous. Therefore, w is Borel measurable.

So, v := −w ∈ V , v(O) ⊂ [−γ, 0] and v1 = sup v(O) = − inf w(O) = 0
as sample path 0 ∈ O. Define g : < → < by g(x) = min{x, 0}. Then, for
r ∈ [0, 1], c = c(r) ∈ (a, b) maximizes

U(r, c) =

∫
O
µ(r)(dx)u(v(x), c)

over C, where u : <2 → < is given by u(v, c) = −S(c)−P ◦(I−g)(−v−c) and
I is the identity mapping. Although this problem resembles the problem of
Theorem 7.1, we cannot apply this theorem directly as u is not sufficiently
regular. Our indirect method for analyzing c(.) proceeds in three steps.

1. We uniformly approximate g by a sequence (gn) of smooth functions.
Each gn generates a uniform approximation un of u over the set v(O)×
C. Each un generates an approximate version of the firm’s problem
and a solution c(.;n) of this approximate problem.

2. We use Theorem 7.1 to show that c(r1;n) ≥ c(r2;n) for all n ∈ N and
r1, r2 ∈ [0, 1] with r1 > r2.

3. We generate cluster points c∗(r1) and c∗(r2) of the sequences (c(r1;n))
and (c(r2;n)) respectively, and show that c(r1) = c∗(r1) ≥ c∗(r2) =
c(r2), as required.

The following approximation is the key to the first step. It is derived by
smoothly pasting smooth functions over various parts of the domain.

Lemma 7.7 Consider b ∈ < and ε > 0. If u : < → < is given by u(x) =
min{x−b, 0}, then there exists a concave, increasing C∞ function h : < → <
such that sup{|h(x) − u(x)| | x ∈ <} ≤ ε, h ≥ u, Dh = 1 on (−∞, b − 2ε],
Dh ∈ (0, 1) on (b− 2ε, b) and h = Dh = 0 on [b,∞).
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Fix N ∈ N such that 2/N < a and consider n ≥ N . Lemma 7.7
implies that there exists a concave, increasing C∞ function gn : < → < such
that sup{|gn(x) − g(x)| | x ∈ <} ≤ 1/n, gn ≥ g, Dgn = 1 on (−∞,−2/n],
Dgn ∈ (0, 1) on (−2/n, 0) and gn = Dgn = 0 on <+. Set gn = gN for n < N .
Given n ∈ N , define un : <2 → < by un(v, c) = −S(c)−P ◦(I−gn)(−v−c).
Clearly, un is C3. The following result completes the first step.

Lemma 7.8 The sequence (un) converges uniformly to u on v(O)× C.

Let c(r;n) ∈ (a, b) maximize U(r, .;n) :=
∫
O µ(r)(dx)un(v(x), .) over C

for r ∈ [0, 1] and n ∈ N . The next result completes the second step.

Lemma 7.9 If n ≥ N , r1, r2 ∈ < and r1 > r2, then c(r1;n) ≥ c(r2;n).

As C is compact, the Bolzano-Weierstrass property implies the existence
of subsequences (c(r1, j)) ⊂ (c(r1, n)) and (c(r2, j)) ⊂ (c(r2, n)) converg-
ing to c∗(r1) ∈ C and c∗(r2) ∈ C respectively. By the above arguments,
c(r1; j) ≥ c(r2; j) for all but a finite set of j. Consequently, c∗(r1) ≥ c∗(r2).

Lemma 7.10 For r ∈ {r1, r2}, c∗(r) maximizes U(r, .) over C.

As U(r, .) is strictly concave, its maximum over C is unique. Therefore,
Lemma 7.10 implies c(r1) = c∗(r1) ≥ c∗(r2) = c(r2), as claimed.

7.4 Optimal inventory management

The previous section featured the problem of managing the production of a
non-durable commodity. The same formalism can be applied to the problem
of managing the inventory of a durable commodity. Since the formal analysis
is identical, we shall only re-interpret the formalism of Section 7.3.

Consider a firm that produces a durable commodity. Let ct, with c > 0,
be the firm’s output over the period [0, t]. Let D(t) be the total orders that
arrive over the period [0, t]. So, the stock-out at time t is max{D(t)− ct, 0}.
In order to discourage stock-outs, the firm imposes a penalty on the manager,
which depends on the largest time-average of stock-outs over the period
T = [0, 1]. Thus, the penalty is based on supt∈T max{D(t)/t− c, 0}.

The manager’s instrument for controlling stock-outs is the production
parameter c. The manager has to pay cost S(c) for choosing c.

Let T , X, O, w, C, P , S and Y(r) be as specified in Section 7.3. The
only change is that Y(r) now represents the firm’s time-average of orders
flow, i.e., e(x, t) = x(t) = D(t)/t for t ∈ T and x ∈ O.

Given r ∈ [0, 1], suppose the production technology c = c(r) ∈ (a, b) min-
imizes the manager’s expected penalty

∫
O µ(r)(dx)P (max{w(x) − c, 0}) +

S(c) over C. As shown in Section 7.3, if r1, r2 ∈ [0, 1] and r1 > r2, then
c(r1) ≥ c(r2), i.e., greater riskiness of the time-average of orders process
induces the manager to choose a higher production rate.
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7.5 Portfolio choice

Consider an investor with wealth 0 who invests in a risky asset with market
value 1. A share c ∈ C := [0, 1] of the asset costs c and yields a share c
of the random dividends from it that arrive over the period T = [0, 1]. Let
the sample paths of the dividend process belong to O ⊂ X := C(T ). A
sample path x ∈ O yields dividend x(t) at time t ∈ T . Let v ∈ V be the
statistic used by the investor to evaluate sample paths. We assume that v
is homogeneous of degree 1. Examples of v include v(x) = x(τ) for some
τ ∈ T , v(x) = inf x(T ) and v(x) =

∫
T dt e

−δtx(t).
Given c ∈ C and x ∈ O, the investor receives the dividend path cx.

The resulting gross payoff, f(v(cx)− cv1) = f(c(v(x)− v1)), depends on the
variation from the reference statistical evaluation v1. Let f : < → < be C3

with Df > 0, D2f < 0 and D3f > 0 on [v0 − v1, 0) and Df(0) = 0.
The investor’s purchase of a share c is financed by selling Q(c) bonds at

price c/Q(c). Each bond yields a gross return α > 0 at time 1.
Given 0 < β < γ, let G : [β, γ] → < be the demand function for the

investor’s bonds; if the bond price is p, then G(p) is the number of bonds
sold. Suppose G is C2, with G(β) = 1/β, G(γ) = 0, DG < 0, D2G < 0
and G(β) + βDG(β) < 0. Then, there is a unique C2 implicit function
P : C → [β, γ] such that c = G(P (c))P (c) for every c ∈ C. This implies
P (0) = γ, P (1) = β, P > 0, DP < 0 and D2P < 0. Setting Q = G ◦ P , it
follows that Q is C2, with Q ≥ 0, DQ > 0 and D2Q > 0. So, a share c of
the risky asset is financed by selling Q(c) bonds at price P (c).

The investor’s net payoff is generated by the function u : v(O)×C → <
given by u(v, c) = f(c(v − v1)) − αQ(c). The investor chooses c ∈ C to
maximize

∫
O µ(r)(dx)u(v(x), c) =

∫
O µ(r)(dx) f(c(v(x)− v1))− αQ(c).

As D211u(v, c) = c[c(v − v1)D3f(c(v − v1)) + 2D2f(c(v − v1))] < 0,
D22u(v, c) = (v − v1)2D2f(c(v − v1)) − αD2Q(c) < 0 and D21u(v1, c) =
Df(0) = 0, Theorem 7.1 implies that Dc(r) ≤ 0, i.e., greater riskiness of
the asset implies a smaller investment in it by the investor.

7.6 Allocation of a public good

We study a planner’s problem of using a given resource to provide a period-
specific public good in each of two periods, say 1 and 2. More precisely,
the two goods are excludable across periods but each period-specific good is
non-excludable and non-rival within the relevant period.

Let I be a finite set of agents. An agent’s allocation in a period consists
of the period-specific public good provided by the planner and a vector of
other period-specific goods. The planner’s resource constraint is modeled by
interpreting φ(c) ∈ <+ as the maximum amount of the public good that the
planner can provide in period 1 if c ∈ C ⊂ <+ is the amount of the public
good to be supplied in period 2. The allocation of other goods in period 1
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is determined by a known outcome y ∈ O and the corresponding allocation
in period 2 is determined by a randomly generated outcome x ∈ O.

Given outcomes x, y ∈ O and the planner’s decision c ∈ C, the aggregate
social welfare is w(v(y), φ(c)) + w(v(x), c), where v : O → < is the function
used by the planner to evaluate outcomes in O. Since y is given, we suppress
it and set ψ(c) = −w(v(y), φ(c)). Therefore, the social welfare function
u : v(O) × C → < is given by u(v, c) = w(v, c) − ψ(c). If the period 2
outcome is x ∈ O and the planner’s decision is c ∈ C, then social welfare is
u(v(x), c) = w(v(x), c)− ψ(c).

We consider alternative specifications of X, O, x and v and analyze how
the optimal c varies with the riskiness of x.

Example 7.11 Let X = (<l)I and O ⊂ (<l+)I . The random outcome is
x = (xi)i∈I ∈ O, where xi is agent i’s allocation of private goods in period 2.
Let agent i’s valuation of xi be fi(xi), where fi : <l+ → < is continuous and
concave. Define v : O → < by v(x) = min{fi(xi) | i ∈ I} for x = (xi)i∈I .

In the next example, instead of directly facing a risky private goods
allocation xi ∈ <l+, agent i indirectly faces this risk via a risky period 2
aggregate endowment x ∈ <l++ that the planner allocates optimally among
the agents using the Rawlsian criterion.

Example 7.12 Suppose X = <l, O ⊂ <l++ and x ∈ O is the aggregate
endowment of private goods in period 2. The planner allocates x among
the agents. Given x, the set of feasible allocations is S(x) = {(xi)i∈I ∈
(<l+)I |

∑
i∈I xi = x}. Given fi as in Example 7.11, define v : O → < by

v(x) = sup{min{fi(xi) | i ∈ I} | (xi)i∈I ∈ S(x)}.

The next example assumes that an agent’s allocation in a given period
consists of the planner’s public good and a vector of other public goods;
private goods are suppressed only for notational simplicity.

Example 7.13 Suppose X = <l, O ⊂ <l+ and x ∈ O is a vector of other
public goods provided in period 2. Let fi(x) be agent i’s valuation of x. Given
fi as in Example 7.11, define v : O → < by v(x) = min{fi(x) | i ∈ I}.

The next result allows the application of Theorem 7.1 to our examples.

Lemma 7.14 In Examples 7.11-7.13, if O is compact, then v ∈ V .

Suppose O is compact. Then, v ∈ V by Lemma 7.14. Suppose w and φ
are C2, D2w > 0, D2φ < 0, D22w < 0, D1w(v1, .) = 0 and D21w(., c) is C1

for every c ∈ C. Then, u satisfies hypothesis (b) of Theorem 7.1.
If D211w ≥ 0, then Theorem 7.1 implies that, in all the above examples,

the planner’s optimal response to an increase in riskiness of the random
outcome x ∈ O is to increase the second period public good allocation c.
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Replacing the Rawlsian criterion with the Benthamite criterion, v in
Examples 7.11-7.13 is given by v(x) =

∑
i∈I fi(xi), v(x) = sup{

∑
i∈I fi(xi) |

(xi)i∈I ∈ S(x)} and v(x) =
∑
i∈I fi(x) respectively. It is easily confirmed

that our result is preserved in these cases.

7.7 Moral hazard in teams

The following example provides a template for numerous moral hazard prob-
lems in team settings.

Consider a principal who might suffer a loss α > 0, say on account of
an accident. The probability of loss is Q(v(x), c), where c ∈ C = [a, b] is
the precaution exercised by the principal, x = (x1, . . . , xn) is the profile of
precautions chosen by the n agents in the team and v(x) = min{x1, . . . , xn}
is the effective precaution exercised by the agents. Suppose choosing pre-
caution c imposes cost c on the principal. Thus, the principal selects c ∈ C
to maximize

∫
O µ(r)(dx)u(v(x), c), where u(v, c) = −c− αQ(v, c) and µ(r)

is the principal’s belief about the precautions chosen by the agents.
Suppose Q : v(O) × C → [0, 1] is C2 and decreasing, D22Q > 0 on

v(O) × (a, b), D21Q(., c) is C1 for every c ∈ C and D1Q(v1, .) = 0. Let
X = <n and let O be compact. If c : [0, 1] → (a, b) is as in Theorem 7.1,
then the sign of Dc(r) is the opposite of the sign of D211Q.

8 Concluding remarks

Given any path-space, we have shown the equivalence of two criteria for
comparing the riskiness of random processes that generate distributions over
the given path-space; indeed, our main result yields many versions of this
equivalence. This equivalence is a consequence of a more abstract result
showing the equivalence of two criteria for comparing the riskiness of lotteries
over any real vector space.

While one of the equivalent criteria is the decision-theoretic touchstone
of the theory of comparative riskiness, the other criterion is very tractable
in applications. We substantiate this claim by using the second criterion in
six economic applications. We also generalize various supplementary results
of the Rothschild-Stiglitz theory to vector outcomes settings.

A Appendix: Classical results

Consider Setting 3. A Markov kernel on O is a function P : O ×B(O)→ <
such that P (x, .) ∈ ∆(O) for every x ∈ O and P (., E) is measurable for
every E ∈ B(O). A dilatation on O is a Markov kernel P on O such that
f(.) =

∫
O P (., dx) f(x) for every continuous affine function f : O → <.
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Definition A.1 In Setting 3, given µ, λ ∈ ∆(O), we say that µ �3 λ if
there is a dilatation P on O such that µ(.) =

∫
O λ(dx)P (x, .).

The following result is Theorem 2 in Strassen [28].

Theorem A.2 In Setting 3, �Vc1 =�3.

In order to state the other equivalence result, we first define a martingale.

Definition A.3 Let X be a separable Banach space. An ordered pair (f, g)
is an X-valued martingale if there is a probability space (Ω,F , Q) such that

(a) f, g ∈ L1(Ω,F , Q;X)
(b) σ(f) := {f−1(B) | B ∈ B(X)} ⊂ σ(g) := {g−1(B) | B ∈ B(X)}, and
(c)

∫
E Q(dx) f(x) =

∫
E Q(dx) g(x) for every E ∈ σ(f).

Condition (a) means that f and g are Bochner integrable random ele-
ments with values in X. Condition (b) means that (σ(f), σ(g)) is a filtration.
By definition, (f, g) is adapted to this filtration. Condition (c) means that
f is (a version of) the expectation of g conditional on f , i.e., f = Eσ(f)g.
Setting h = g − f , we have Eσ(f)h = Eσ(f)g − f = 0. Therefore, we have
the representation g = f + h, where Eσ(f)h = 0, i.e., g is f plus noise. This
interpretation motivates the following definition.

Definition A.4 In Setting 4, given µ, λ ∈ ∆(O), we say that µ �4 λ if there
exists an X-valued martingale (f, g) with Q ◦ f−1 = λ and Q ◦ g−1 = µ.

The following result is a consequence of Theorem 8 in Strassen [28].

Theorem A.5 In Setting 4, �Vc1 =�4.

B Appendix: Proofs

Proof of Theorem 3.4 As (O,O) is admissible, E = (O,O, P ;T, e) is a
process. As ê is the identity function on O, it is measurable. Therefore, E
is admissible with respect to (O,O) and P = P ◦ ê−1.

Proof of Theorem 6.5 As �V1 is reflexive and transitive, so is �. We
show that � is antisymmetric. Let [µ] � [λ] and [λ] � [µ] for µ, λ ∈ ∆(O).
To show that [µ] = [λ], it suffices to show that µ ∼ λ, i.e., µ ◦ v−1 = λ ◦ v−1

for every v ∈ V .
Consider v ∈ V . By the definition of �, we have µ �V1 λ and λ �V1 µ. Us-

ing Corollary 6.4, µ �V2 λ and λ �V2 µ. Therefore, c(y) :=
∫

(−∞,y] dx [F (x, µ◦
v−1)− F (x, λ ◦ v−1)] = 0 for every y ∈ <. Consequently, Dc(y) = 0 for ev-
ery y ∈ <. If y is a continuity point of F (., µ ◦ v−1) − F (., λ ◦ v−1), then
0 = Dc(y) = F (y, µ◦v−1)−F (y, λ◦v−1) (Bartle [2], Theorem 31.8). Suppose
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y is a discontinuity point of F (., µ ◦ v−1)−F (., λ ◦ v−1). The set of such dis-
continuity points is countable (Billingsley [4], Theorem 10.2). Consequently,
there exists a sequence of continuity points (yn) ⊂ (y,∞) converging to y.
As F (yn, µ◦ v−1)−F (yn, λ◦ v−1) = 0 for every n and distribution functions
are right-continuous, we have F (y, µ ◦ v−1) − F (y, λ ◦ v−1) = 0. It follows
that F (., µ ◦ v−1) = F (., λ ◦ v−1).
P = {(−∞, y] | y ∈ <} is a π-system and L = {E ∈ B(<) | µ ◦ v−1(E) =

λ◦v−1(E)} is a λ-system (Billingsley [4], Page 41). By the above argument,
P ⊂ L. By Dynkin’s theorem (Billingsley [4], Theorem 3.2), B(<) = σ(P) ⊂
L, i.e., µ ◦ v−1 = λ ◦ v−1.

Proof of Theorem 6.6 (A) Consider µ ∈ ∆(O). If a, b ∈ X and h(a) =∫
O µ(dx)h(x) = h(b) for every h ∈ X∗, then h(a− b) = h(a)− h(b) = 0 for

every h ∈ X∗. Consequently, a = b (Dunford and Schwartz [10], Corollary
V.2.13). So, if mµ exists, then it is unique. We now show that mµ ∈ O
exists.

Define H : X → <X∗ by H(x) = (h(x))h∈X∗ . Give <X∗ the product
topology. H is continuous as all its component functions are continuous.
If H(x) = H(y) for x, y ∈ X, then h(x − y) = h(x) − h(y) = 0 for every
h ∈ X∗, which implies x = y. So, H is injective. As O is compact and <X∗ is
Hausdorff, H imbeds O in <X∗ . So, H(O) is closed in <X∗ and metrizable.

Consider µ ∈ ∆(O) with finite support. The linearity of h ∈ X∗ implies

∫
O
µ(dz)h(z) =

∑
z∈suppµ

µ({z})h(z) = h

 ∑
z∈suppµ

µ({z})z

 (3)

Setting mµ =
∑
z∈suppµ µ({z})z, we have mµ ∈ O as O is convex and

suppµ ⊂ O. Thus, H(mµ) ∈ H(O) for every µ ∈ ∆(O) with |suppµ| <∞.
Consider µ ∈ ∆(O). As O is compact and metric, it is separable. Con-

sequently, there exists a sequence (µn) ⊂ ∆(O) converging to µ in the C(O)
topology such that |suppµn| < ∞ for every n ∈ N (Parthasarathy [18],
Theorem II.6.3).10 By the above argument, mµn exists, mµn ∈ O and
H(mµn) ∈ H(O) for every n ∈ N . Using (3) and the definition of con-
vergence in the C(O) topology,

lim
n↑∞

h(mµn) = lim
n↑∞

∫
O
µn(dz)h(z) =

∫
O
µ(dz)h(z)

for every h ∈ X∗. Thus, limn↑∞H(mµn) = (
∫
O µ(dz)h(z))h∈X∗ . As the

sequence (H(mµn)) ⊂ H(O) and H(O) is closed in <X∗ and metrizable, we
have (

∫
O µ(dz)h(z))h∈X∗ ∈ H(O). As H imbeds O in <X∗ , there exists a

10The C(O) topology is the weakest topology on ∆(O) that makes the functional µ 7→∫
O
µ(dx) f(x) continuous for every f ∈ C(O). It belongs to the class of weak* topologies

in analysis and is usually called “the weak topology” in probability theory.
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unique x ∈ O such that H(x) = (
∫
O µ(dz)h(z))h∈X∗ . By the definition of

H, we have h(x) =
∫
O µ(dz)h(z) for every h ∈ X∗. Set mµ = x.

(B) Suppose µ �Vc1 λ. Consider h ∈ X∗. It is straightforward to verify
that the restrictions of h and −h to O belong to Vc. It follows that µ �Vc1 λ
implies

∫
O µ(dx)h(x) =

∫
O λ(dx)h(x) for every h ∈ X∗. By (A), there exist

unique vectors mµ,mλ ∈ O such that h(mµ) =
∫
O µ(dx)h(x) and h(mλ) =∫

O λ(dx)h(x) for every h ∈ X∗. Thus, h(mµ−mλ) = h(mµ)−h(mλ) = 0 for
every h ∈ X∗. So, mµ = mλ (Dunford and Schwartz [10], Corollary V.2.13).

If µ �V1 λ, then µ �Vc1 λ and the above argument applies.

Proof of Theorem 6.7 Suppose µ �Vc1 λ for µ, λ ∈ ∆(O) and v ∈ Vc
is strictly increasing. By Theorem 6.6, µ and λ have unique Pettis means
mµ,mλ ∈ O and mµ = mλ.

As O is convex, it is connected. As v is continuous, v(O) ⊂ < is an
interval. As v is bounded,

∫
O µ(dx) v(x) exists and

∫
O µ(dx) v(x) = v(c) for

some c ∈ O. As mµ−c ∈ π(v, µ), we have π(v, µ) 6= ∅. Similarly, π(v, λ) 6= ∅.
Consider a ∈ π(v, µ) and b ∈ π(v, λ). Since µ �Vc1 λ, v(mµ − a) =∫

O µ(dx) v(x) ≤
∫
O λ(dx) v(x) = v(mλ − b). As v is strictly increasing,

¬mµ − a > mλ − b, and so, ¬a < b. Consequently, π(v, µ) ≥∗ π(v, λ).

Proof of Theorem 6.8 Consider x ∈ X and y ∈ X − {x}. Then, there
is a continuous linear functional g : X → < such that g(x) > g(y) (Dun-
ford and Schwartz [10], Corollary V.2.13). As g is continuous, U(y) :=
g−1((−∞, g(x))) is an open neighborhood of y that does not include x. So,
X − {x} = ∪y∈X−{x}U(y) is open in X. Therefore, {x} is closed in X for
every x ∈ X.

As a is not injective, there exist x, y ∈ O such that x 6= y and a(x) =
a(y). By the above argument, there is a continuous linear functional f : X →
< such that f(x) > f(y). The restrictions of f and −f to O belong to Vc. As
{x} and {y} are closed subsets of O, they are Borel sets. So, δx, δy ∈ ∆(O).
As a is bounded, B := [inf a(O), sup a(O)] ⊂ < and δx◦a−1, δy◦a−1 ∈ ∆(B).
As δx ◦ a−1 = δy ◦ a−1, we have δx ◦ a−1 �V1 δy ◦ a−1 and δy ◦ a−1 �V1
δx ◦ a−1. Since

∫
O δx(dz) f(z) >

∫
O δy(dz) f(z) and

∫
O δx(dz) (−f)(z) <∫

O δy(dz) (−f)(z), we have ¬δx �Vc1 δy and ¬δy �Vc1 δx.

Proof of Theorem 7.1 Define φ : < × <2 → < and Φ : [v0, v1] × < → <
by φ(x, (r, c)) = h(x, r)u(x, c) and Φ(x, r) =

∫
[v0,x] dy H(y, r). Suppose (i) φ

is C2, (ii) U is C2 on [0, 1] × C, and (iii) Φ(x, .) is differentiable for every
x ∈ [v0, v1] and D2Φ ≥ 0 on [v0, v1]× [0, 1]. We shall verify these facts later.

Consider r ∈ [0, 1]. Given (ii), (b) and (c), D2U(r, c(r)) = 0 and
D22U(r, c(r)) < 0. The implicit function theorem implies that c is C1 in
a neighborhood of r. Using (ii), D21U(r, c(r)) + D22U(r, c(r))Dc(r) = 0.
Consequently, Dc(r) and D21U(r, c(r)) have the same sign.

Let (r, c) ∈ [0, 1] × C. Using (i) and integrating by parts, D2U(r, c) =
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∫
[v0,v1] dxh(x, r)D2u(x, c) = D2u(v1, c) −

∫
[v0,v1] dxD21u(x, c)H(x, r).11 Us-

ing (a) and (b), D21U(r, c) = −
∫

[v0,v1] dxD21u(x, c)D2H(x, r). Integrating

by parts and using (b), D21U(r, c) =
∫

[v0,v1] dxD211u(x, c)D2Φ(x, r). Given
(iii), D211u ≥ 0 (resp. ≤ 0) implies D21U ≥ 0 (resp. ≤ 0), in particular,
D21U(r, c(r)) ≥ 0 (resp. ≤ 0), and consequently, Dc(r) ≥ 0 (resp. ≤ 0).

We now verify claims (i)-(iii).
(i) Using (a), (b) and Theorem XIII.7.1 in Lang [15], φ is C2.
(ii) As [v0, v1] is bounded, φ(., (r, c)) is bounded on [v0, v1]. So, U(r, c) =∫

[v0,v1] dxφ(x, (r, c)) exists. Using (i), DU(r, c) =
∫

[v0,v1] dxD2φ(x, (r, c))
and analogous arguments applied to the component functions of DU im-
ply that D2U(r, c) =

∫
[v0,v1] dxD22φ(x, (r, c)), i.e., U is twice differentiable.

Since D22φ is continuous on the compact set [v0, v1] × [0, 1] × C, the com-
ponent functions are bounded on this set. Consequently, D2U is continuous
on [0, 1]×C (Lang [15], Exercise VI.10.13). Therefore, U is C2 on [0, 1]×C.

(iii) Using (a), D2Φ(x, .) =
∫

[v0,x] dy D2H(y, .) for every x ∈ [v0, v1]. As

r1, r2 ∈ [0, 1] and r2 > r1 implies µ(r2) �V2 µ(r1), Φ(x, .) is increasing on
[0, 1] for every x ∈ [v0, v1]. So, D2Φ ≥ 0 on [v0, v1]× [0, 1].

Proof of Theorem 7.2 Specializing the proof of Theorem 7.1, we have∫
[v0,v1] dxh(x, r)f(x) − De(c(r)) = D2U(r, c(r)) = 0 and −D2e(c(r)) =
D22U(r, c(r)) < 0. As De is differentiable and strictly increasing, it has
a differentiable inverse. So, c(r) = (De)−1(

∫
[v0,v1] dxh(x, r)f(x)). The chain

rule and (a) imply that c(.) is differentiable. So,
∫

[v0,v1] dxD2h(x, r)f(x) −
D2e(c(r))Dc(r) = 0. Therefore, Dc(r) and

∫
[v0,v1] dxD2h(x, r)f(x) have

the same sign. Twice integrating by parts and using (a) and (b′), we have∫
[v0,v1] dxD2h(x, r)f(x) =

∫
[v0,v1] dxD

2f(x)
∫

[v0,x] dy D2H(y, r) ≤ 0.

Proof of Lemma 7.3 As β0 ∈ <+ and β1 ∈ <, b is nonnegative and
bounded.

Let c1, c2 ∈ C such that c1 < c2. If c1 = 0, then b(c1) = 0 ≤ b(c2). If c1 >
0, then G−1([c2, 1]) ⊂ G−1([c1, 1]); consequently, b(c1) = inf G−1([c1, 1]) ≤
inf G−1([c2, 1]) = b(c2), i.e., b is increasing and therefore measurable.

If α < 0, then b−1((α,∞)) = C, which is open in C. Consider α ≥ 0.
Let c ∈ b−1((α,∞)). Then, c ∈ (0, 1] and inf G−1([c, 1]) = b(c) > α. Con-
sequently, G(α) < c. Thus, b−1((α,∞)) ⊂ (0, 1] ∩ (G(α),∞). Conversely,
suppose c ∈ (0, 1] ∩ (G(α),∞). As G(b(c)) ≥ c, we have G(α) < G(b(c)).
As G is increasing, α < b(c). Thus, b−1((α,∞)) ⊃ (0, 1] ∩ (G(α),∞). So,
b−1((α,∞)) = (0, 1] ∩ (G(α),∞), which is open in C. Therefore, b is left-
continuous.

Proof of Lemma 7.4 Suppose G is not strictly increasing on [β0, β1].
Then, there exist b1, b2 ∈ [β0, β1] such that b1 < b2 and G(b1) = G(b2) = c.

11In this and subsequent cases, differentiating under the integral sign is justified by our
assumptions and Theorem XIII.8.1 in Lang [15].
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As b1 < b2 ≤ β1 = inf G−1({1}), we have c = G(b1) < 1. So, there exists
N ∈ N such that c+ 1/N < 1. For every n ≥ N , we have b(c+ 1/n) ≥ b2 >
b1 ≥ b(c). Thus, b(c+) ≥ b2 > b(c), i.e., b is not continuous.

Conversely, suppose b is not continuous. As b is increasing and left-
continuous, there exists c ∈ [0, 1) and α1, α2 ∈ < such that b(c) < α1 <
α2 < b(c+) ≤ b(c + 1/n) for every n ∈ N such that c + 1/n ≤ 1. As
G is increasing, we have c ≤ G(α1) ≤ G(α2) < c + 1/n. It follows that
G(α1) = c = G(α2). Thus, G is not strictly increasing.

Suppose b is not strictly increasing. Then, there exist c1, c2 ∈ C such
that c1 < c2 and b(c1) = b(c2). Then, G(b(c1)) = G(b(c2)) ≥ c2 > c1.
If c1 = 0, then G(0) = G(b(0)) > 0 = G(0−) as β0 ≥ 0, i.e., G is not
continuous. If c1 > 0, then G(b(c1) − 1/n) < c1 for every n ∈ N , which
implies G(b(c1)) > c1 ≥ G(b(c1)−), i.e., G is not continuous.

Conversely, suppose G is not continuous. As G is increasing and right-
continuous, there exists α ∈ < and c1, c2 ∈ (0, 1) such that G(α) > c2 > c1 >
G(α−). As G is increasing, [α,∞) ⊂ G−1([c1, 1]). If β < α, then G(β) ≤
G(α−) < c1, which means β 6∈ G−1([c1, 1]). So, [α,∞) ⊃ G−1([c1, 1]).
Thus, G−1([c1, 1]) = [α,∞). Similarly, G−1([c2, 1]) = [α,∞). By definition,
b(c1) = α = b(c2). Thus, b is not strictly increasing.

Proof of Lemma 7.5 Suppose G is strictly increasing on [β0, β1] and
continuous. Then, Lemma 7.4 implies that b is continuous. Continuity of
g follows immediately for the first-price auction. To confirm the continuity
of g for the second-price auction, consider a sequence (cn) ⊂ C converging
to c. Define h : C × < → < by h(c, y) = y1[0,b(c)](y). As b is continuous,
limn↑∞ b(cn) = b(c). Consequently, limn↑∞ h(cn, y) = limn↑∞ y1[0,b(cn)](y) =
y1[0,b(c)](y) = h(c, y) for y 6= b(c). As G is continuous, µG({b(c)}) =
G(b(c)) − G(b(c)−) = 0, where µG is the Lebesgue-Stieltjes measure gen-
erated by G. By definition, g(.) =

∫
[0,b(.)] ydG(y) =

∫
< h(., y)dG(y) =∫

< µG(dy)h(., y). Using the dominated convergence theorem (Billingsley [4],
Theorem 16.4), it follows that limn↑∞ g(cn) = limn↑∞

∫
< µG(dy)h(cn, y) =∫

< µG(dy)h(c, y) = g(c).

Proof of Lemma 7.6 (A) Let B(C) be the set of real-valued functions
on C that are uniform limits of functions that are finite linear combinations
of the characteristic functions of sets in the Borel σ-algebra B(C). With
the supremum norm, B(C) is a Banach space (Dunford and Schwartz [10],
Section IV.5). As g is bounded and Borel measurable, g ∈ B(C).

Let ba(C) be the set of bounded, finitely additive real-valued functions
defined on B(C). With the variation norm, ba(C) is a Banach space (Dun-
ford and Schwartz [10], Sections III.7 and IV.9). By a Riesz type represen-
tation theorem (Dunford and Schwartz [10], Theorem IV.5.1), ba(C) may
be identified with the conjugate of B(C).

Equip ba(C) with the B(C) topology. This is the weakest topology on
ba(C) that makes the linear functional µ 7→

∫
C µ(dx)h(x) continuous for
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every h ∈ B(C). As g ∈ B(C), L is continuous.
By Alaoglu’s theorem (Dunford and Schwartz [10], Theorem V.4.2), the

closed unit sphere of ba(C) is compact. As ∆(C, c) is a subset of this sphere,
it is compact if it is closed. Consider λ ∈ ba(C) that is an accumulation point
of ∆(C, c). Then, there exists a net (λn) ⊂ ∆(C, c) converging to λ. By def-
inition, limn λn(E) = limn

∫
C λn(dx) 1E(x) =

∫
C λ(dx) 1E(x) = λ(E) for ev-

ery E ∈ B(C). Consequently, λ(∅) = 0, λ(C) = 1 and λ ≥ 0. Consider pair-
wise disjoint sets E1, . . . , Ek ∈ B(C). Then, E = ∪ki=1Ei ∈ B(C). As each
λn is finitely additive, we have λ(E) = limn λn(E) = limn

∑k
i=1 λn(Ei) =∑k

i=1 limn λn(Ei) =
∑k
i=1 λ(Ei). So, λ is finitely additive. As the iden-

tity map on C is bounded and measurable, it belongs to B(C) and c =
limn

∫
C λn(dx)x =

∫
C λ(dx)x. Thus, λ ∈ ∆(C, c). So, ∆(C, c) is closed and

therefore compact.
The compactness of ∆(C, c) and the continuity of L yield the result.
(B) As L is nonnegative and bounded, so is e.
If c1, c2 ∈ C and c1 < c2, then {λ ∈ ∆(C)∗ | mλ ≥ c2} ⊂ {λ ∈ ∆(C)∗ |

mλ ≥ c1}, and using Footnote 9, e(c2) = inf{L(λ) | λ ∈ ∆(C)∗ ∧ mλ ≥
c2} ≥ inf{L(λ) | λ ∈ ∆(C)∗ ∧ mλ ≥ c1} = e(c1).

Consider c1, c2 ∈ C, t ∈ (0, 1) and c = tc1 + (1 − t)c2. By (A), there
exists λ1 ∈ ∆(C, c1)∗ and λ2 ∈ ∆(C, c2)∗ such that e(c1) = L(λ1) and
e(c2) = L(λ2). Set λ = tλ1 + (1 − t)λ2. Since mλ = tmλ1 + (1 − t)mλ2 =
tc1 + (1 − t)c2 = c, we have λ ∈ ∆(C, c)∗. It follows that e(c) ≤ L(λ) =
tL(λ1) + (1− t)L(λ2) = te(c1) + (1− t)e(c2). Thus, e is a convex function.

Continuity of e on (0, 1) follows from Theorem 7 on page 193 of Berge [3].
The Busemann-Feller-Alexandrov theorem (see Fleming and Soner [11])

implies that e is twice differentiable Lebesgue almost everywhere.

Proof of Lemma 7.7 The proof is by construction. Let a = b− 2ε.
Define ξ : < → < by ξ(x) = (2x − b − a)/(b − a). Clearly, ξ is C∞,

ξ(a) = −1, ξ(b) = 1, |ξ(x)| < 1 for x ∈ (a, b) and |ξ(x)| > 1 for x ∈ <\ [a, b].
Define ψ : < → < by12

ψ(x) =

{
exp{−(1− x2)−1}, if |x| < 1
0, if |x| ≥ 1

Clearly, suppψ = [−1, 1] and
∫
< dxψ ◦ ξ(x) =

∫
[a,b] dxψ ◦ ξ(x) ≤ ε. We shall

verify that ψ is C∞.
Define f : < → < by f(x) = −ψ ◦ ξ(x)/

∫
< dxψ ◦ ξ(x). It is easily

verified that f ≤ 0, supp f = [a, b], f is symmetric around (a + b)/2 and∫
< dx f(x) =

∫
[a,b] dx f(x) = −1. As −f is a probability density function

on <, with support [a, b] and symmetric around (a + b)/2, it follows that∫
< dxxf(x) =

∫
[a,b] dxxf(x) = −(a+ b)/2. As ξ and ψ are C∞, so is f .

12Such “bump functions” are widely used in analysis, for instance as mollifiers and to
construct smooth partitions of unity.
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Define g : < → < by g(x) = 1 +
∫

(−∞,x] dy f(y). Then, g is C∞, Dg =
f ≤ 0, g = 1 on (−∞, a], g ∈ (0, 1) on (a, b) and g = 0 on [b,∞).

Define h : < → < by

h(x) =

{
x− b+ ε, if x < a
a− b+ ε+

∫
[a,x] dy g(y), if x ≥ a

It is easily verified that h is C∞, Dh = g ≥ 0 and D2h = f ≤ 0. Thus, h is
increasing and concave, with Dh = 1 on (−∞, a], Dh ∈ (0, 1) on (a, b) and
Dh = 0 on [b,∞). We now compare h and u.

Consider x ∈ (−∞, a). We have h(x) = x− b+ ε = u(x) + ε.
Consider x ∈ (b,∞). As g = 0 on (b,∞),

∫
[a,x] dy g(y) =

∫
[a,b] dy g(y) =∫

[a,b] dy [1+
∫

[a,y] dz f(z)] = b−a+b
∫

[a,b] dz f(z)−
∫

[a,b] dy yf(y) = (b−a)/2 =
ε. So, h(x) = a− b+ 2ε = 0 = u(x).

Consider x ∈ [a, b]. As f = 0 on (−∞, a],
∫

[a,x] dy g(y) =
∫

[a,x] dy [1 +∫
[a,y] dz f(z)] = x − a +

∫
[a,x] dy

∫
[a,y] dz f(z). As f ≤ 0, we have 0 ≥∫

[a,x] dy
∫

[a,y] dz f(z) =
∫

[a,x] dy (x − y)f(y) ≥
∫

[a,b] dy (b − y)f(y) = (a −
b)/2 = −ε. Therefore, h(x) = a − b + ε + x − a +

∫
[a,x] dy

∫
[a,y] dz f(z) =

u(x)+ε+
∫
[a,x] dy

∫
[a,y] dz f(z). Since

∫
[a,x] dy

∫
[a,y] dz f(z) ∈ [−ε, 0], we have

h(x)− u(x) ∈ [0, ε].
Consequently, h(b) = 0, h ≥ u and sup{|h(x)− u(x)| | x ∈ <} ≤ ε.
It only remains to confirm that ψ is C∞. Observe that ψ = φ ◦ η, where

φ : < → < is given by

φ(y) =

{
e−1/y, if y > 0
0, if y ≤ 0

(4)

and η is given by η(x) = 1− x2. Using the chain-rule, as η is C∞, it suffices
to show that φ is C∞. As preparation, we note two facts.

First, for n ∈ N , it is easily verified that

Dnφ(y) =

{
pn(y)φ(y)y−2n, if y > 0
0, if y < 0

(5)

where pn(y) is the polynomial of degree n − 1 generated by the recursive
rule: p1(y) = 1 and pk+1(y) = y2Dpk(y)− (2ky − 1)pk(y) for k ∈ N .

Second, consider y > 0 and n ∈ N ∪ {0}. Using the power series repre-
sentation of e1/y, we have the estimate 0 ≤ y−n = yy−(n+1) ≤ y(n+ 1)!e1/y.
Thus, 0 ≤ limy↓0 e

−1/yy−n ≤ limy↓0 y(n+ 1)! = 0, i.e., limy↓0 φ(y)y−n = 0.
Setting n = 0 implies that limy↓0 φ(y) = 0. Using (4), φ is continuous.
The left-hand derivative of φ at 0 is limy↑0[φ(y) − φ(0)]/y = 0 and the

right-hand derivative of φ at 0 is limy↓0[φ(y)−φ(0)]/y = limy↓0 φ(y)y−1 = 0.
Thus, D1φ(0) = 0. Using (5), D1φ exists on < and is continuous.

For the inductive step, suppose Dnφ exists on < for n ∈ N and Dnφ(0) =
0. The left-hand derivative of Dnφ at 0 is limy↑0[Dnφ(y) −Dnφ(0)]/y = 0
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and the right-hand derivative of Dnφ at 0 is limy↓0[Dnφ(y) −Dnφ(0)]/y =
limy↓0 pn(y)φ(y)y−(2n+1) = pn(0) limy↓0 φ(y)y−(2n+1) = 0. It follows that
Dn+1φ(0) = 0. Using (5), Dn+1φ exists on < and is continuous.

It follows that φ is C∞.

Proof of Lemma 7.8 Let Y = [−γ, 0] × [a, b] and define A : Y → < by
A(v, c) = −v− c. Endow C(Y ) and C(A(Y )) with their respective compact-
open topologies. As Y and A(Y ) are compact, these topologies are metrized
by the respective uniform metrics (Dugundji [9], Theorem XII.8.2).

Since the sequence (gn) ⊂ C(<) converges uniformly to g, the sequence
(I − gn) ⊂ C(<) converges uniformly to I − g. Therefore, (I − gn) converges
uniformly to I−g on A(Y ). As the mapping f 7→ f◦A from C(A(Y )) to C(Y )
is continuous (Dugundji [9], Theorem XII.2.1), the sequence ((I−gn)◦A) ⊂
C(Y ) converges uniformly to (I − g) ◦A on Y .

As the mapping h 7→ P ◦h from C(Y ) to C(Y ) is continuous (Dugundji [9],
Theorem XII.2.1), the sequence (P ◦(I−gn)◦A) ⊂ C(Y ) converges uniformly
to P ◦ (I − g) ◦A on Y .

Since un = −S◦π2−P ◦(I−gn)◦A, where π2 is the projection π2(v, c) = c,
it follows that the sequence (un) converges uniformly to u = −S ◦ π2 − P ◦
(I − g) ◦A on Y . The claim follows as v(O)× C ⊂ Y .

Proof of Lemma 7.9 Fix n ≥ N . It is easily confirmed thatD22un < 0. As
2/n < a and Dgn(x) = 1 for x ∈ (−∞,−2/n], we have Dgn(x) = 1 for every
x ∈ [−b,−a]. Since 0 ∈ O, v1 = sup v(O) = 0. Consequently, for every
c ∈ C, D1un(v1, c) = D1un(0, c) = DP ((I − gn)(−c))[1 − Dgn(−c)] = 0.
Routine calculation yields D211un = −DPD3gn − 3D2P (1 − Dgn)D2gn +
(1−Dgn)3D3P , where the derivatives of P are evaluated at (I − gn)(w− c)
and the derivatives of gn are evaluated at w − c. If w − c < 0, then (I −
gn)(w− c) = w− c− gn(w− c) < w− c−min{w− c, 0} = 0. Consequently,
DP ◦ (I − gn)(w − c) = 0 as P (x) = 0 for x ≤ 0. On the other hand,
if w − c ≥ 0, then D3gn(w − c) = 0 as gn(x) = 0 for x ≥ 0. Given
our hypotheses regarding P and the facts that gn is concave and Dgn ≤
1, we have D211un = −3D2P (1 − Dgn)D2gn + (1 − Dgn)3D3P ≥ 0. By
Theorem 7.1, Dc(r;n) ≥ 0.

Proof of Lemma 7.10 Fix r ∈ {r1, r2} and the subsequence (c(r, nj)) of
(c(r, n)), converging to c∗(r). For m, j ∈ N , let F (m, j) = U(r, c(r, nm);nj),
f(m) = U(r, c(r, nm)) and φ(j) = U(r, c∗(r);nj). For (m1, j1), (m2, j2) ∈
N 2, we say that (m1, j1) � (m2, j2) if m1 ≥ m2 and j1 ≥ j2. Then, (N 2,�)
is a directed set and {F (m, j) | (m, j) ∈ N 2;�} is a net in <.

Fix ε > 0. By Lemma 7.8, (un) converges uniformly to u on v(O) × C.
Therefore, (unj ) converges uniformly to u on v(O) × C. So, there exists
J ∈ N such that j ≥ J implies ‖unj − u‖ < ε/8, where ‖.‖ is the supremum
norm on C(v(O)× C). Consequently, for every c ∈ C, j ≥ J implies

|U(r, c;nj)− U(r, c)| ≤
∫
O
µ(r)(dx) |unj (v(x), c)− u(v(x), c)|
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≤ ‖unj − u‖
< ε/8 (6)

Thus, limj↑∞ U(r, c;nj) = U(r, c) for every c ∈ C.
Setting c = c∗(r) in (6), we have |φ(j)− U(r, c∗(r))| = |U(r, c∗(r);nj)−

U(r, c∗(r))| < ε/8 for j ≥ J . Thus, limj↑∞ φ(j) = U(r, c∗(r)).
If we set c = c(r, nm) in (6), then m ∈ N and j ≥ J imply |F (m, j) −

f(m)| = |U(r, c(r, nm);nj) − U(r, c(r, nm))| < ε/8. Consequently, m ∈ N
and j ≥ J implies |F (m, j) − F (m,J)| ≤ |F (m, j) − f(m)| + |F (m,J) −
f(m)| < ε/4.

The continuity of unj and the bounded convergence theorem (Billings-
ley [4], Theorem 16.5) imply that φ(j) = limm↑∞ F (m, j) for every j ∈ N .
So, given J , there existsM ∈ N such thatm ≥M implies |F (m,J)−φ(J)| <
ε/8. Consequently, m ≥M implies |F (m,J)−F (M,J)| ≤ |F (m,J)−φ(J)|+
|F (M,J)− φ(J)| < ε/4.

It follows that j ≥ J and m ≥ M implies |F (m, j) − F (M,J)| ≤
|F (m, j) − F (m,J)| + |F (m,J) − F (M,J)| < ε/2. Therefore, if (m1, j1) �
(M,J) and (m2, j2) � (M,J), then |F (m1, j1) − F (m2, j2)| ≤ |F (m1, j1) −
F (M,J)|+ |F (m2, j2)− F (M,J)| < ε. Thus, {F (m, j) | (m, j) ∈ N 2;�} is
a Cauchy net with respect to the Euclidean space <. As the Euclidean
space < is complete, this net converges to some p ∈ < (Dugundji [9],
Theorem XIV.3.2). Consequently, there exists (M ′, J ′) ∈ N 2 such that
(m, j) � (M ′, J ′) implies |F (m, j)− p| < ε.

Without loss of generality, let J ′ ≥ M ′. So, j ≥ J ′ implies (j, j) �
(J ′, J ′) � (M ′, J ′), which implies |F (j, j)− p| < ε. So, limj↑∞ F (j, j) = p.

Moreover, |p− φ(j)| = |p− limm↑∞ F (m, j)| = limm↑∞ |p− F (m, j)| ≤ ε
for every j ≥ J ′. Thus, limj↑∞ φ(j) = p.

By definition, U(r, c(r, nj);nj) ≥ U(r, c;nj) for all j ∈ N and c ∈
C. Therefore, we have U(r, c∗(r)) = limj↑∞ φ(j) = p = limj↑∞ F (j, j) =
limj↑∞ U(r, c(r, nj);nj) ≥ limj↑∞ U(r, c;nj) = U(r, c) for every c ∈ C.

Proof of Lemma 7.14 If v is continuous, then it is Borel measurable,
and compactness of O implies it is bounded. So, it suffices to show that v
is continuous and concave in each case.

In Example 7.11, for every i ∈ I, as the projection mapping πi : X → <l
is continuous, fi ◦ πi : O → < is continuous. Since v(.) = min{fi ◦ πi(.) | i ∈
I}, v is continuous (Berge [3], Theorems IV.8.3 and IV.8.4).

Now consider x, y ∈ O and t ∈ (0, 1). Then, tx + (1 − t)y ∈ O and v is
concave as

v(tx+ (1− t)y) = min{fi(txi + (1− t)yi) | i ∈ I}
≥ min{tfi(xi) + (1− t)f(yi) | i ∈ I}
≥ min{tfi(xi) | i ∈ I}+ min{(1− t)fi(yi) | i ∈ I}
= tmin{fi(xi) | i ∈ I}+ (1− t) min{fi(yi) | i ∈ I}
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= tv(x) + (1− t)v(y) (7)

Now consider Example 7.12. Clearly, S has nonempty values. Consider
a sequence (xn)n∈N ⊂ O and a family of sequences {(xin)n∈N ⊂ <l+ | i ∈ I}
such that limn xn = x, limn x

i
n = xi for every i ∈ I and xn =

∑
i∈I x

i
n

for every n ∈ N . Clearly, (xin)i∈I ∈ S(xn) for every n ∈ N . It follows
that x ∈ O, xi ∈ <l+ for every i ∈ I and x =

∑
i∈I x

i. It follows that
(xi)i∈I ∈ S(x). Thus, S has a closed graph, and therefore, closed values.
As O is compact, there exists y ∈ (<l+)I such that S(x) is a subset of the
compact set {z ∈ (<l)I | 0 ≤ z ≤ y} for every x ∈ O. Therefore, S is upper
hemicontinuous (Berge [3], Theorem VI.1.7) and has compact values.

We now confirm that S is lower hemicontinuous. Fix x ∈ O and (xi)i∈I ∈
S(x). By definition, 0 � x =

∑
i∈I x

i; therefore, πj(x) > 0 for every
j ∈ {1, . . . , l}. Consider a sequence (xn)n∈N ⊂ O converging to x. We need
to construct a family of sequences {(xin)n∈N ⊂ <l+ | i ∈ I} such that (a)∑
i∈I x

i
n = xn for every n ∈ N , and (b) limn x

i
n = xi for every i ∈ I.

For j ∈ {1, . . . , l} and n ∈ N , let λjn = πj(xn)/πj(x). As limn xn = x,
we have limn πj(xn) = πj(x) and limn λ

j
n = 1 for every j ∈ {1, . . . , l}.

Let xin = (λ1
nπ1(xi), . . . , λlnπl(x

i)). Then, xin ∈ <l+ and limn x
i
n = xi for

every i ∈ I. For j ∈ {1, . . . , l}, we have
∑
i∈I λ

j
nπj(x

i) = λjnπj(
∑
i∈I x

i) =
λjnπj(x). It follows that

∑
i∈I x

i
n = (

∑
i∈I λ

1
nπ1(xi), . . . ,

∑
i∈I λ

l
nπl(x

i)) =
(λ1
nπ1(x), . . . , λlnπl(x)) = (π1(xn), . . . , πl(xn)) = xn, as required.

As S is continuous and has nonempty compact values, v is continuous
(Berge [3], Maximum theorem, Pg. 116).

Consider x, y ∈ O and t ∈ (0, 1). Then, tx + (1 − t)y ∈ O. Using
(A) and the fact that S has nonempty compact values, we conclude that
v(x) = min{fi(xi) | i ∈ I}, v(y) = min{fi(yi) | i ∈ I} and v(tx + (1 −
t)y) = min{fi(zi) | i ∈ I} for some (xi)i∈I ∈ S(x), (yi)i∈I ∈ S(y) and
(zi)i∈I ∈ S(tx + (1 − t)y). Since (txi + (1 − t)yi)i∈I ∈ S(tx + (1 − t)y), (7)
implies that v is concave as

v(tx+ (1− t)y) = min{fi(zi) | i ∈ I}
≥ min{fi(txi + (1− t)yi) | i ∈ I}
≥ tv(x) + (1− t)v(y)

In Example 7.13, v is continuous and concave by an argument analogous
to that used for Example 7.11.
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