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Abstract

While there is consensus that innovation is a prime motive force in the process of modern
economic growth, there continues to be lack of clarity about how best to capture this
process of innovation. Although it is relatively clear that research and development
expenditure constitutes an important, perhaps even the most important, input into the
innovation process, its relationship with the output of this process remains enigmatic. A
sizeable literature considers this relationship in the developed country context, though
primarily the US, and sheds light on a number of aspects. Evidence for developing countries,
in contrast, is sparse.

This study intends to fill this gap by exploring the innovation-R&D relationship as exemplified
by the influence of knowledge capital on patents, in the context of the emerging economy of
India. Using a relatively large sample of 380 manufacturing firms spanning 22 industries over
the recent period 2001-2010, we find weak evidence at best for this relationship. A one unit
(dollar or rupee) increase in the knowledge capital stock is likely to raise the expected patent
count by only about 0.7%, which given the current average patent count per firm per year, is
only a marginal change. In addition, we also find that patent experience and the firm’s
access to resources are both strongly significant factors explaining changes in expected
patent counts, although their magnitudes are equally small. Our semi-elasticity estimate
w.r.t knowledge capital translates to an elasticity of about 0.02 at the means, which is in line
with that for enterprises in Spanish manufacturing. However, it is an order of magnitude
smaller than the 0.1 to 0.2 reported for the Dutch pharmaceuticals sector, and the 0.3 to 0.6
for firms in the US manufacturing sector.

Given the many reasons why most firms appear not to patent even when they conduct some
research, policy makers would have to address multiple issues to bring about a more
effective conversion of research into formal intellectual property in the developing country
context.
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1. Introduction
While there is consensus that innovation is a prime motive force in the process of modern
economic growth, there continues to be lack of clarity about how best to capture this
process of innovation. Although it is relatively clear that research and development
expenditure constitutes an important, perhaps even the most important, input into the
innovation process, its relationship with the output of this process remains enigmatic. The
reasons for this are multiple: Not all research and development expenditure fructifies into
innovation, a lot of it may just go ‘waste’.! Even when it does result in research output,
doubling it may not add very much to the existing research output. R&D expenditure may
result in new products or processes, but these may be refused protection via patents and
copyrights. Alternatively, such expenditure may result in new products and processes which
are in fact granted protection. R&D expenditure may have significant implications for firm
sales, profit and market value even when the associated innovations are ‘small’; on the
other hand, it may have no such implications even when the associated innovations are
supposedly significant insofar as they have been granted protection. These multitudinous
possibilities demonstrate the difficulty in relating research and development expenditure
with the resulting research output.

Nevertheless, given the importance of this association, we persist in exploring it in

our specific context. For this purpose we shall use patent data in lieu of research output in



this study, because patents “... are available, are ... related to inventiveness, and are based
on ... an objective and slowly changing standard” (Griliches 1990). Thus, patent counts, i.e.
the number of patents granted to a firm, are intrinsically related to the firm’s inventiveness.
Furthermore, insofar as patents are granted on the criteria of novelty and non-obviousness,
they are supposedly conferred for creating something new and for something that involves
an inventive step, which makes them suitable proxies for innovation.?

The extant literature considers this relationship mostly in the developed country
context, and sheds light on a number of aspects. Pakes and Griliches (1984) were amongst
the first to study the significance of lags in the patents-R&D relationship for US
manufacturing firms. They found that the relationship was more or less contemporaneous,
and although patents are a good indicator of differences in the inventiveness across firms,
they are not equally effective in explaining such variations over time for a given firm. Hall,
Griliches and Hausman (1986) reach much the same conclusion, using a more up-to-date
and larger sample of US firms (see also Hausman, Hall and Griliches 1984). These studies
improve upon Bound et al. (1984) who reported a strong patents-R&D relationship, but used
cross-section data. Montalvo (1997), and Blundell et al. (2002) who allow for a linear
feedback mechanism in the patents-R&D relationship, are broadly in sync with the earlier
studies using US data. Crépon and Duguet (1997), using a large 1980s sample of French
manufacturing firms, not only confirm the positive patents-R&D relationship, but also find
that past patents exercise a small effect on current patents. Cincera (1997), using a small
international sample of firms, is in agreement regarding the patents-R&D relationship or the
so-called knowledge production function. These studies report elasticities of patents with
respect to R&D that vary between about 0.3 and about 0.6 for the most part. Czarnitzki et

al. (2009) showed in the context of Belgian firms, that using R&D expenditure as a whole



rather than just ‘R” may lead to an underestimation of research productivity, because it is
mainly ‘R” and not ‘D’ that leads to patents.

The bulk of the studies in this area evidently pertain to the US, with only a few for
some other developed countries. Evidence for developing countries, in contrast, is sparse.
Deolalikar and Roller (1989), using a small sample of 145 Indian manufacturing firms in the
late-1970s, find that the probability of patenting is insignificantly explained by R&D
expenditure, with a near zero elasticity. Chadha (2009), using a more recent sample of 65
firms in the Indian pharmaceuticals sector, finds instead a research elasticity of patenting
ranging between 0.5 and 1.8.

This study intends to fill the gap in our understanding of the knowledge production
function in the developing country context with low levels of R&D, and it contributes to the
literature in @ number of ways. It is based on a relatively large sample of 380 manufacturing
firms in India, spanning 22 industries, over the recent period 2001-2010. The sample
excludes firms with less than ten years of R&D data, in the belief that firms need to conduct
research for a ‘long enough’ period to realistically produce any innovation; it appears too
sanguine to use data for just one or a ‘small’ number of years per firm, as some studies do.
Second, we take stock of the fact that our count data (namely, patents) exhibit the
phenomenon of ‘excess zeros’ (Cameron and Trivedi 2010). Thus, a firm may report zero
patents either because it does not file for patents (on grounds that its innovation is not
good enough, or the patent is too costly, or if it wants to keep the innovation secret), or
because it did file for patents but was turned down by the patent office. In this situation, the
number of zeroes is said to be ‘inflated’, and two distinct processes are seen as generating
the count data, one determining the zero counts and the other the nonzero counts. As

explained in detail in section 2, we employ the zero-inflated negative binomial to address



this criticism of earlier estimation procedures. Third, earlier estimates may be consistent
only under the condition of strict exogeneity of the regressors, which may or may not hold
in our case. We strive to correct for possible endogeneity using the linear feedback model
proposed by Blundell et al. (1999), which slackens the exogeneity condition by
approximating the fixed effects by the log of patent counts from a pre-sample period.
Finally, the earlier literature does not allow for the non-technical knowledge stock of the
firm, which also determines the success with which R&D transforms into patents (OECD
2011). Thus, R&D may lead to patents only when combined with appropriate managerial
and organisational changes, and changes in ‘firm culture’. Although this variable is difficult
to measure, section 2.1 explores using a patent stock variable to reflect such experience, as
a first approximation.

Using our specification, we find weak evidence at best for the presence of the
knowledge production function in the Indian manufacturing sector. A one unit (dollar or
rupee) increase in the knowledge capital stock is likely to raise the expected patent count by
only about 4.3% at most. Given the current average patent count per firm per year of about
0.8, this is an insignificant change. We also find that patent experience is a strongly
significant factor explaining changes in expected patent counts, although its magnitude is
only slightly larger at about 1.3%. Further, we find that firms with greater access to
resources are more likely to patent than the less fortunate, which has special implications in
the developing country context where small firms and start-ups are starved of research
funds. Finally, although knowledge spillovers are strongly significant in explaining expected
patent counts, a unit increase in spillovers from other firms raises patenting by a mere 0.3%.

The rest of the paper is organised as follows. Section 2 develops the estimation model, and



discusses the model variables. Section 3 details the dataset. Section 4 presents the empirical

results, and section 5 provides a brief conclusion.

2. Estimation Model

Following Pakes & Griliches (1984), we posit that changes in a firm’s stock of economically
useful knowledge (K) occur on account of R&D expenditure (R) and other stochastic factors
such as the inherent randomness of innovations (u), so that the knowledge production
function may be expressed as:

K=R+u (1)
where the error term also picks up the non-formal R&D inputs which are taken to be
uncorrelated with the R&D expenditure.

Patents (PAT) are a manifestation, albeit imperfect, of the changes in the stock of
knowledge (K), so that an indicator function may be taken to relate the two as
PAT = aK +v (2)
where v captures the noise in the relationship. Combining (1) and (2), we may express the
patent production function (Hausman et al. 1984, Hall et al. 1986, Cincera 1997, Crépon and
Duguet 1997, Blundell et al. 2002) as
PAT =aR+au+v (3)
where u and v are uncorrelated.

The regressand in (3) is a count variable that can take only discrete, non-negative
values with no upper bound. Further, the distribution of patents granted is highly skewed,
with a very large number of firms granted no patents (so that the regressand is zero), and a
very small number granted many patents. In addition, the patent grants of a firm may occur

independently over time; and their variance, conditional on their covariates, may tend to



increase with the covariates. As a first approximation, therefore, the regressand can be
modelled as a Negative Binomial process. In that case, if PAT;; is the patent count of firm i
in period t, the probability of having a patent count of p;;, given the covariate vector x;;, is

892, Pit  r(0+pir)
(Aie+0)PittOr (pi+1)r ()
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where f(-) is the Negative Binomial probability distribution function (having parameters 6
and p;;) with conditional mean E (PAT;;|x;;) = A, and conditional variance V(PAT;:|x;;) =
Air + a?,. We then hypothesize that

E(PATy|x;t) = A = exp(x) (5)
where f§ is the parameter vector.

This formulation, however, runs into the criticism that count data often display the
phenomenon of ‘excess zeros’ (Cameron and Trivedi 2010). To understand this, we must ask
what the reason could be for a firm to report a zero patent count. There could be two
distinct possibilities here: If a firm does not file for patents it will end up with zero patents.
This may happen if the firm does not consider the innovation good enough to merit a
patent, or if it considers the patent to be too expensive to obtain, or if it does not want to
disclose its innovation in the patent document. We shall refer to this group as the ‘certain
zero’ group. Alternatively, if a firm does file for patents but is turned down by the patent
office, it will again end up with zero patents.® In a sense, then, the number of zeroes is
‘inflated’ and the case of zero patents cannot be explained in the same manner as that of
non-zero patents. In other words, there appear to be two distinct processes generating the
count data, with one determining the zero counts and the other (Negative Binomial) the
nonzero counts. Let the probability of the former be ¥;;(z;,y) for observation i in time

period t, where () is the logit function, z;; the relevant covariates and y the associated



parameter vector. Then the probability of having a patent count of p;; is g(PitlXit, Zir) =
Wi (Ziey) + [1 = i (2] f Olx;)} if pie =0, and [1 — (2 ¥)]f @iclxie) if pie > 0.
This composite model, referred to as the Zero-Inflated Negative Binomial model, has a
conditional ~mean  E(PAT|xis, zi) = Ail[1 — 4], and  conditional  variance
V(PAT;|xit, Zir) = Aie[1 — Yyl + A5 [a + Pie][1 — ¥;.]. The former is then related to the

set of covariates as in equation (5) above.

2.1. The Regressors

Evidently the most important regressor in our specification relates to research and
development investment. Although many of the studies reviewed above, and both
pertaining to India in particular, use annual research and development expenditure and its
lags, the conclusion appears to be that the lag structure does not add much to explaining
knowledge production. In fact, Hall, Griliches and Hausman (1986) observe that “... R and D
and patents appear to be dominated by a contemporaneous relationship, rather than leads
or lags”. Additionally, given that we are not interested in the lag structure per se in this
study, we propose to capture the influence of past R&D expenditure by computing a
knowledge capital stock (KNOWCAP). This is done using the perpetual inventory relation
KNOWCAP, = (1 — d)KNOWCAP _1y + R, for each firm i, where KNOWCAP is the stock of
knowledge capital, R is research and development expenditure, d is the rate of depreciation of
knowledge capital, and t is the time subscript (Hall 1990). In functionalising this relationship we
follow the literature in setting the depreciation rate at 15% per annum. To determine the value of
the stock in the “first’ period, we employ the sample period R&D expenditure to compute a proxy for

the pre-sample rate of growth of R&D. This ranges from 0.5% for metals to 2.7% for

pharmaceuticals, and is considerably less than the 8% p.a. used by various studies including those for



developing countries. Having computed the value of the stock in the first period, we then employ
the perpetual inventory equation to derive the complete series, using R&D data deflated by the
industry sales deflator.

Recent developments in the innovation literature (Beneito et al. 2014) argue that another
important factor contributing to the ‘success’ of research investment is experience in this domain.
Earlier research and development activity may or may not have resulted in success in terms of
patents generated, but at least improves the firm’s ability to approach a research problem — in
accordance with the maxim ‘uses promptos facit’ or its modern version ‘practice makes perfect’. In
other words, the firm benefits from what the literature calls learning-by-doing and learning-to-learn
(Nelson and Winter 1982). However, we feel that these are precisely the kinds of knowledge that are
implicitly captured in the knowledge capital stock variable discussed in the previous paragraph. In
fact, representing R&D experience as “the number of years the firm has been carrying out R&D” as
do Beneito et al (2014), would be inadequate because there is both a time as well as a magnitude
dimension to learning — the longer you do something the better you become at it, but equally the
more you do it the better you become. Thus, if two firms conduct R&D over the previous five years
such that the second firm conducts twice as much R&D as the first, then one may be justified in
conjecturing that the second firm accumulates more technical knowledge than the first. Further, the
effect of earlier investments in this learning process is likely to fade over time, so that what the firm
did five years back may be less important than what it did two years back. Both these aspects of the
innovation process are well-integrated in the perpetual inventory method that we use to compute
the knowledge capital stock of firms, as discussed in the previous paragraph.

We feel, however, that even the knowledge capital stock variable is incomplete in capturing
the firm’s learning experience, because technical knowledge is only part of the story, and non-
technical knowledge is also important in determining the success with which R&D investment gets
converted into patents (OECD 2011), something that the studies cited above do not consider. For

instance, R&D may fructify into innovations and patents only when matched by suitable managerial



changes, or organisational changes in the research team, or changes in the ‘firm culture’. Since the
knowledge capital stock measure is based on R&D investment only, it probably fails to pick up the
accumulation of non-technical knowledge in a firm. While it is not immediately obvious how we can

directly measure the non-technical knowledge stock of firms, we explore the use of a 'patent
experience' variable (PATEXP) as an indirect measure. This measure, defined as the
number of patents filed (and subsequently obtained) by the firm, say in the previous five
years, should capture the effect of the firm’s non-technical knowledge stock. Being a
composite measure, however, it would also capture persistence effects (Sanyal and
Vancauteren 2013) insofar as the firm’s previous patenting experience familiarizes it with
the procedure, cost, and subsequent benefits of patenting, and thereby influences its
current proclivity to patent. To explore whether the effect of a firm’s knowledge capital
stock on its patenting behaviour is affected by its patent experience, we also include the
interaction term KNOWCAP « PATEXP in the set of regressors.

An important covariate included by many of the earlier studies is firm size, which is
captured alternatively by a firm’s physical assets, employment or sales. However, these
studies do not precisely spell out what advantages large firms have over small(er) ones in
the innovation context. On the one hand, large firms arguably have greater access to
resources, both for conducting research and to pay for the patenting process, than do
smaller ones. Deeper pockets also enable them to weather the uncertainty attaching to the
process of innovation better. On the flip side, small firms may be relatively more dynamic
and hence more innovative, at least in certain industries (Acs and Audretsch 1990). Further,
firms that are large in a given milieu, such as small economies, may be considered small in
the context of large economies. In other words, the variable firm size hides opposing forces

vis-a-vis the innovativeness of firms, and ideally should not be represented by a single



variable as the earlier studies have done. We feel that these opposing forces ought to be
allowed for by including two separate variables instead of a single portmanteau variable
such as firm size. We propose to capture a firm’s access to resources in terms of its real
profits (PROFIT), which is expected to have an unambiguous positive effect on its
innovativeness. The second factor pertaining to a firm’s dynamism is very difficult to define,
and as a first approximation we use the observation that highly innovative firms generally
possess an important patent or two from inception. However, none of our sample firms
fitted this observation, and so we omit this variable from our analysis.

Another important covariate in our context pertains to the knowledge spillovers that
a firm may benefit from. Research and development undertaken by firms in the economy
produces non-rival knowledge that may stimulate technological innovation in a
‘neighbouring’ firm. Unlike earlier studies that attempt to capture this effect in terms of the
total research and development investment of the ‘rest of the economy’ (i.e. by firms other
than the firm in question), we prefer to first compute the stock of knowledge capital in the
rest of the economy, using the perpetual inventory method outlined above. We then allow
for the fact that the extent of the knowledge spillover for a given firm likely depends on the
extent to which it is intertwined with the economy on the input side, which we proxy by the
share of its material input expenditure (on raw materials and utilities) in the total economy-
wide input expenditure in a specific year. Multiplying this ratio with the knowledge capital
stock of the ‘rest of the economy’ gives us the spillover variable (SPILLOVER). None of the
covariates in our study are ‘confounders’, and are included to improve estimation efficiency,
since they can potentially influence the dependent variable but are not influenced by the

(individual) firm’s knowledge capital.
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The period being analysed witnessed a considerable strengthening of intellectual
property protection as India became fully TRIPS compliant during its designated
implementation period. This period saw three amendment acts — the Patents Acts 1999,
2002 and 2005. Our sample period also saw a number of fiscal and monetary policy reforms
(Nayak, Goldar and Agrawal 2010) that may have had substantial implications for firm
competitiveness and hence their innovation strategies. Finally, there were substantial
changes in the cost of patenting with effect from 2004 (Government of India 2003), with
potential implications for the patenting behaviour of our sample firms. We propose to allow
for these disparate policy changes scattered across different time points in our sample

period, by including a full set of year dummies.

3. The Dataset
The data for this study were compiled from two different data sources. The bulk of the data were
drawn from the ‘Prowess’ database, marketed by the Centre for Monitoring Indian Economy (CMIE
2014), and pertain to firms traded on the Bombay and National Stock Exchanges of India. Only firms
with data for R&D and physical capital for the ten-year period 2001-2010 were retained.* Implicit in
this criterion was the concern that firms would have to conduct research and development for a long
enough time period to realistically expect any output in terms of innovation. While it is evidently
unclear how long such a period should be, and ‘theory’ has little to contribute in this respect, at the
same time it might be too optimistic to presume that even firms with just one or a ‘few’ year’s R&D
ought to be included in the sample, as do some of the studies cited above. Therefore, we err on the
side of caution in choosing the period in question to be a substantial ten years.

This yielded data for 380 firms for the period 2001-2010, or 3800 observations. The firms
straddled 22 manufacturing industries mostly at the broad 2-digit, and some at the 3-digit, levels of

the National Industrial Classification (NIC). These industries are: auto ancillaries, automobiles,
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cement, chemicals, domestic appliances, drugs and pharmaceuticals, electrical machinery,
electronics, food and agro-products, leather and leather products, metals and metal products, non-
electrical machinery, personal care products, petroleum products, plastic and plastic products,
rubber and rubber products, textiles and textile products, construction material, consumer goods,
gems and jewellery, glass and glass products, paper and paper products.

Data on the patents (PAT) filed by each firm in a given year, patents that were subsequently

granted, were extracted from the online database of the Indian Patent Office of the
Government of India. These data also served for creating the patent experience variable.
Patent data were extracted by the year of filing, because our interest lies in relating the
research output with the research input. This purpose would not be served by using the
date of grant, given the long lag between the filing and grant dates. For the sake of
completeness, we note that the modal lag between patent filing and patent grant is about
four years for our sample, which is why our sample period stops at 2010. Table 1 provides
the basic descriptive statistics for the model variables.

Of the 380 firms in the sample, 267 (about 70%) did not obtain a single patent during
the study period. The mean patent count or the average number of patents per firm per
year for the overall sample is about 0.8, with a substantial standard deviation of 5.2. This
variable has a rather low correlation of 0.2 with knowledge capital stock, a much higher
correlation of 0.6 with the patent experience variable, a correlation of about 0.3 with the
profit variable, and a mere 0.04 with the spillover variable. Moreover, none of the pairwise
correlations between the model regressors are disturbingly high. Importantly, ‘between

variation” much exceeds ‘within variation’ for all the model variables except spillovers.

4. Empirical Results
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4.1. Random and ‘Fixed Effects’ Negative Binomial Specifications

We begin by presenting the results of the negative binomial model with random effects,
wherein the dispersion parameter is randomly determined across firms. From Table 2, we
find that there is a weak relationship between the expected patent count of a firm and its
stock of knowledge capital, the relationship being statistically insignificant even using a one-
tail test. From the full model in column (5), we see that a one unit increase in the regressor
would increase the expected patent count by a factor of €%096331 = 1,00635, or by only
0.6% ceteris paribus. The interaction term is insignificant with a coefficient close to zero and
is therefore ignored. Patent experience turns out to have a strongly statistically significant
effect on the regressand, although this translates into a mere 0.5% change in the dependent
variable for every one unit change in this regressor. Similar is the case of the resource access
proxy or profit, which though strongly significant, appears to effect a mere 0.3% change in
the regressand. The spillover variable is strongly significant in explaining variations in
expected patent counts, albeit with a small 0.3% effect on the dependent variable for every
unit increase in the regressor. The hypothesis that all the regressors are simultaneously zero
is strongly rejected, with the p-value of the associated Wald statistic being 0.

We next discuss the estimation results of the conditional ‘fixed effects’ negative
binomial specification, wherein the dispersion parameter can take on any value due to
unobserved firm-specific factors, but drops out of estimation following differencing. Table 3
informs us that the results are in almost complete conformity with those of the random
effects specification. Thus, from the full model in column (5), we find that the stock of
knowledge capital exerts a zero influence on expected firm patent counts; and the same
holds for the interaction term. However, the patent experience variable (PATEXP), the

resource access variable (PROFIT), as well as the spillover variable (SPILLOVER) are all
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statistically significant in explaining variations in the dependent variable as before, with
semi-elasticities that are roughly in the same ball-park as those for the random effects
specification. It is not surprising that the significance levels and the semi-elasticities are
lower in this case, for the fixed effects specification makes use of the within-variation only,
which as we saw in Table 1 is less than the between-variation for all variables except
spillovers. In particular, research and development expenditure tends to be highly
correlated over time for a given firm, and this becomes even more pronounced when we
compute the knowledge capital stock variable, seriously reducing the variation that is
available for identifying variations in the expected patent count. The Hausman specification
test is not able to reject the null hypothesis that there is no systematic difference in the

random effects and ‘fixed effects’ coefficients.

4.2. Unconditional Negative Binomial Specification with Industry Dummies

Researchers point out that the random effects and ‘fixed effects’ specifications discussed
above actually pertain to random and fixed effects in the dispersion parameter, and not the
regressors. In this sense, the conditional ‘fixed effects’ negative binomial model does not
really correct for the fixed effects (Allison 2009). This may be remedied by estimating an
unconditional negative binomial model with panel dummies in lieu of the fixed effects.
While in theory this produces inconsistent estimates on account of the incidental
parameters problem (Green 2012), simulation studies yield good results and do not provide
evidence of any incidental parameters bias in the coefficients (Allison and Waterman 2002).
Further, the downward bias in the standard errors of the regression coefficients can be

effectively corrected using the deviance statistic. Unfortunately, in our context, we appear
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to have too many panels for the STATA algorithm to converge, so that instead of including
firm dummies in our specification, we use industry dummies.

The estimation results of the unconditional negative binomial model with industry
dummies and appropriately scaled standard errors are reported in Table 4. The full model
results of column (5) show that the knowledge capital variable is now mildly positively
related to the dependent variable, with a one unit increase in the former being associated
with a 4.3% increase in the expected patent count. As before, the patent experience and
profit variables exercise a strong positive influence on the regressand, albeit with
significantly larger semi-elasticities of 2.8% and 0.9%, respectively. Similarly, the knowledge
spillover variable is also strongly significant, although the associated semi-elasticity is still
small at about 0.3%. Although the interaction term between knowledge capital and patent
experience turns out to be mildly significant with a counter-intuitive negative sign, we
ignore this result because the magnitude of this regression coefficient and hence the

associated semi-elasticity is zero for all practical purposes.

4.3. Zero-Inflated Negative Binomial Specification with Industry Dummies

As we argued in section 2, count data often display the phenomenon of ‘excess zeros’, to
handle which we estimate the zero-inflated negative binomial specification. This
specification results in two sets of regression coefficients, the first pertaining to the
expected patent count for those firms which do file patents, and the second pertaining to
the odds of belonging to the ‘certain zero’ group or the group of firms which do not file
patents. From the estimation results reported in Table 5, it is evident that if a firm’s stock of
knowledge capital were to increase by one unit, the expected number of patents in a year

would increase by merely 0.7%, ceteris paribus. Once again, the interaction term of
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knowledge capital with patent experience has a coefficient that is zero for all practical
purposes. Patent experience, profit and spillovers all exert a strongly significant positive
influence on the expected patent count of firms, with semi-elasticities of 1.3%, 0.6% and
0.3%, respectively.

From the lower panel of Table 5, we can read off the results pertaining to the
probability of belonging to the ‘certain zero’ group. We find that if a firm’s stock of
knowledge capital were higher by one unit, the odds that it would file zero patents would be
lower by a factor of 02060766 — () 8138 or decrease by about 18.6%, ceteris paribus. If a
firm’s patent experience were higher by one unit the odds that it would file zero patents
would decrease by a factor of e 72357555 = (0.0947 or decrease by about 90.5%. However, if
a firm’s real profit were larger by one unit the odds that it would file zero patents would
decrease by a factor of e~%0122489 = (0 9878 or decrease by about 1.2% only, holding other
factors constant. While the first of these results vis-a-vis the knowledge capital regressor is
statistically insignificant, the second pertaining to patent experience is strongly significant,

whereas the last one relating to real profits is only mildly significant using a one-tail test.

4.4. Linear Feedback Models

A possible shortcoming of the above specifications is that the estimates may be consistent
only under strict exogeneity of the regressors. While this may not be a huge concern given
that few firms actually patent, we nevertheless attempt to correct for this using the linear
feedback model suggested by Blundell et al. (1999) (see also Czarnitzki et al. 2009). This
model weakens the exogeneity condition by approximating the fixed effects by the log of
patent counts from a pre-sample period (L_PRE_SAM_PAT). In our case, we arbitrarily take

this period to be 1991-1995. Given that many firms are likely to have no patents in this
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period, a dummy (NO_PRE_SAM_PAT) is additionally used to represent this ‘missing’ value.
Table 7 reports the results from the linear feedback mechanism applied to both the negative
binomial and zero-inflated negative binomial specifications. In spirit, the results are no
different from those discussed in the previous two sections, and need not be presented
here in detail. Note that the pre-sample mean of the patent count is only mildly significantly
different from zero using a one-tail test, indicating that we are no worse off in staying with

the earlier results from these specifications.

4.5. The Results in Perspective

Not only is the zero-inflated negative binomial model preferable to the negative binomial on
various theoretical grounds emphasized in the discussion above, it appears to be preferable
on the basis of various test criteria as well. Tables 6 and 7 inform us that both the Akaike
and Bayesian information criteria rule in favour of the zero-inflated model (without and with
the linear feedback mechanism). Further, so does the Vuong test, except that Desmarais
and Harden (2013) point out that the traditional Vuong test is biased, and needs to be
corrected to allow a proper test of zero inflation. However, corrections using the Akaike and
Bayesian information criteria still strongly advise in favour of the zero-inflated model
(without and with the linear feedback mechanism). The only criteria that support the
negative binomial over its zero-inflated variant are the mean predictions from the two
models. Thus, as against the observed zero patent count of 90.5% in the sample, the
negative binomial predicts a zero patent count of 90.6% versus 90.8% by the zero-inflated
model. Furthermore, the mean absolute difference between the observed and predicted
patent counts from the negative binomial model is 0.001 in comparison with 0.002 for the

zero-inflated variant. Note, however, that both these differences are miniscule, so that we
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must resort to the differences in the information criteria and the bias-corrected Vuong test
to choose between the two specifications in question.

Either way the results are fairly consistent across the different specifications as to
sign, significance and even magnitude. The coefficient of knowledge capital stock remains
mostly insignificant, and has a magnitude of only about 0.7% in the preferred zero-inflated
negative binomial (full) regression. This implies that a one unit (dollar or rupee) change in
the knowledge capital stock is likely to result in a 0.7% increase in the expected patent
count, which is very small given that on average firms file less than a single patent annually.
Our semi-elasticity estimate translates into an elasticity of about 0.02 at the means, which
facilitates comparison with earlier studies.® Our elasticity is much below even the lower end
of the elasticity range of 0.5 to 1.8 reported by Chadha (2009), part of which may have to do
with the fact that her study relates to the Indian drugs and pharmaceuticals industry only.
Our estimate is, in fact, in about the same range as the insignificant research elasticity of
patents of 0.01 reported by Deolalikar and Roller (1989) for a sample of Indian
manufacturing industries. An elasticity of 0.02 implies that a doubling of the knowledge
capital stock (which is a rather tall order in any short period) would leave the average
annual number of patents filed by a firm virtually the same as the current 0.8.

Interestingly, our knowledge capital elasticity of patent counts of 0.02 is comparable
to that reported by Beneito et al. (2014) who use recent Spanish data. Their study finds very
low elasticities of 0.07 for large firms and 0.04 for small and medium enterprises in Spain.
Further, while the elasticities reported by some studies for other developed countries are
higher by an order of magnitude, they are not very high in absolute terms. Thus, using
recent Dutch data for the pharmaceuticals industry, Sanyal and Vancauteren (2013) report

elasticites ranging between 0.1 and 0.2 only. Using data on US manufacturing firms from the
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1970s, Hall et al. (1986) and Hausman et al. (1984) report elasticities ranging between 0.1
and 0.3 for the most part, although Blundell et al. (2002) report an elasticity of about 0.5,
using their preferred pre-sample mean estimator. An important factor that one must allow
for in comparing our elasticity estimate with those from earlier studies is that in most of the
earlier studies the regressor was research and development investment (with or without
lags) and not knowledge capital. While the latter is preferable insofar as it discounts the
effect of past R&D investment, we must be aware that computing the knowledge capital
variable further reduces the already low variation in firm-level R&D investment.

In addition to the above results relating to expected patent counts, another
advantage of using the zero-inflated negative binomial model is the added information that
it provides on the probability of ‘certain’ zero patents. The results discussed in section 4.3
on this score are perfectly plausible, for indeed one would expect firms with more patent
experience and higher knowledge capital (as also better access to resources) to have a
smaller likelihood of not filing patents. These results, though, cannot benefit from
comparison with other studies, because none of the earlier studies report similar evidence,

even where they employ a zero-inflated negative binomial model.

5. Conclusion

This study set out to explore the innovation-R&D relationship as exemplified by the
influence of knowledge capital on patents, in the context of the emerging economy of India.
It contributes to the received literature in a number of ways. It employs the zero-inflated
negative binomial model to address the problem of ‘excess zeroes’ in count data such as
ours. The linear feedback mechanism proposed by Blundell et al. (1999) is then used to

estimate the preferred specifications, which yields consistent estimators by weakening the

19



strict exogeneity condition. Based on a relatively large sample of 380 manufacturing firms in
India, spanning 22 industries, the sample includes only firms with ten years of R&D data,
because firms would need to conduct research for a ‘long enough’ period to realistically
have a change of producing an innovation; data for just one or a few years may be
inadequate. Further, knowledge capital stocks are employed rather than R&D expenditure
and its lags, which is preferable for a number of reasons discussed above, including the
point that it implicitly captures ‘R&D experience’ as a determinant of innovation. Unlike the
received literature, we also introduce the firm’s non-technical knowledge stock as another
factor of the success with which R&D transforms into patents.

We find weak evidence at best for the presence of the so-called knowledge
production function. The reasons that most firms do not patent even when they conduct
some research can be multiple. It may lie in the realisation that the resulting innovations are
‘small’ and not worthy of seeking formal protection. Alternatively, the cost of patenting may
be considered too high. Relevant in this context may be the non-monetary costs of
patenting in terms of the paperwork and bureaucracy, which may be beyond most small
firms with no dedicated R&D departments. Further, it might be the case that firms are
apprehensive about revealing their innovations in the patent documents, given the general
perception of a corrupt bureaucracy. Finally, one should not discount the simple possibility
that most firm managers in a very low education developing country setting are not even
properly aware of the patent system, how it functions, and what potential advantages it
may bestow on those who can negotiate it. One would have to address all these factors to
bring about a more effective conversion of research into formal intellectual property in the

developing country context.
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Table 1: Sample Characteristics

Variable Level Mean Standard Minimum Maximum
Deviation

PATENTS Overall 0.75 5.16 0.00 100.00
Between 4.32
Within 2.83

KNOWLEDGE CAPITAL Overall 2.15 10.30 0.00 283.28
Between 8.67
Within 5.58

PATENT EXPERIENCE Overall 2.77 19.73 0.00 450.00
Between 16.86
Within 10.28

PROFIT Overall 6.94 29.18 -121.14 506.92
Between 25.42
Within 14.39

SPILLOVER Overall 4.02 34.85 0.002 1219.36
Between 17.72
Within 30.02

Correlation Matrix

PAT KNOWCAP PATEXP PROFIT SPILLOVER
PAT 1.00
KNOWCAP 0.20 1.00
PATEXP 0.64 0.27 1.00
PROFIT 0.26 0.30 0.32 1.00
SPILLOVER 0.04 0.08 0.05 0.35 1.00

Note: PAT is patents (count); KNOW CAP is knowledge capital stock (Rs. million) using 15% depreciation rate;
PATEXP is patent experience (count); PROFIT is deflated profit (Rs. million), and SPILLOVER is
knowledge spillover (Rs. million) using 15% depreciation rate.
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Table 2: Random Effects Negative Binomial Specification
Dependent Variable — Log (PAT)

Variable (1) (2) (3) (4) (5)
KNOWCAP 0.0038" 0.0022 0.0094" 0.0074 0.0063
(0.0030) (0.0029) (0.0073) (0.0073) (0.0077)
PATEXP 0.0046™" 0.0054™"" 0.0048™" 0.0046™"
(0.0009) (0.0012) (0.0012) (0.0012)
KNOWCAP = PATEXP —-0.0001 —0.00004 —0.00004
(0.0001) (0.0001) (0.0001)
PROFIT 0.0027*" 0.0028™
(0.0010) (0.0011)
SPILLOVER 0.0033™
(0.0007)
Intercept -0.5974™"  -0.6351"""  -0.6983""  -0.7205""  -0.6960"""
(0.1934) (0.1939) (0.2015) (0.2014) (0.2029)
N 3800 3800 3800 3800 3800
Year Dummies Yes Yes Yes Yes Yes
P — value (all slopes 0) 0.0000 0.0000 0.0000 0.0000 0.0000

Note: *** ** * denote significance at the 1%, 5% and 10% levels using a two-tail test;
and " denotes significance at the 10% using a one-tail test
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Table 3: Conditional ‘Fixed Effects’ Negative Binomial Specification

Dependent Variable — Log (PAT)

Variable (1) (2) (3) (4) (5)
KNOWCAP 0.0008 —-0.0004 —-0.0040 —-0.0051 —-0.0068
(0.0036) (0.0034) (0.0072) (0.0071) (0.0073)
PATEXP 0.0039™ 0.0035™ 0.0031" 0.0028™
(0.0010) (0.0013) (0.0013) (0.0013)
KNOWCAP = PATEXP 0.00003 0.00004 0.0001
(0.0001) (0.0001) (0.0001)
PROFIT 0.0020" 0.0022"
(0.0011) (0.0012)
SPILLOVER 0.0034™"
(0.0007)
Intercept -0.5621""  -0.5940""  -0.5591""  -0.5807""" = -0.5519"""
(0.1953) (0.1954) (0.2052) (0.2049) (0.2062)
N 1090 1090 1090 1090 1090
Year Dummies Yes Yes Yes Yes Yes
P — value (all slopes 0) 0.0000 0.0000 0.0000 0.0000 0.0000
P — value (Hausman) 0.9928

Note: *** ** * denote significance at the 1%, 5% and 10% levels using a two-tail test;
and " denotes significance at the 10% using a one-tail test.

The Hausman specification test compares column (5) Table 3 with column (5) Table 2.
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Table 4: Unconditional Negative Binomial with Industry Dummies

Dependent Variable — Log(PAT)

Variable (1) (2) (3) (4) (5)
KNOWCAP 0.0593" 0.0231 0.0584™ 0.0404" 0.0419"
(0.0410) (0.0122) (0.0259) (0.0187) (0.0189)
PATEXP 0.0288""" 0.0333"" 0.0278"" 0.0278""
(0.0092) (0.0088) (0.0088) (0.0084)
KNOWCAP * PATEXP -0.0006™  -0.0004"  -0.0004""
(0.0002) (0.0002) (0.0002)
PROFIT 0.0103""" 0.0090™""
(0.0027) (0.0030)
SPILLOVER 0.0028""
(0.0011)
Intercept -2.4768™"  -2.0417""  -2.1065"" -1.9426"" -1.9627"""
(0.3885) (0.3377) (0.3309) (0.3188) (0.3173)
N 3800 3800 3800 3800 3800
Year Dummies Yes Yes Yes Yes Yes
P — value (all slopes 0) 0.0000 0.0000 0.0000 0.0000 0.0000
Robust S.E. Yes Yes Yes Yes Yes
Corrected S.E. Yes Yes Yes Yes Yes

Note: *** ** * denote significance at the 1%, 5% and 10% levels using a two-tail test;

and " denotes significance at the 10% using a one-tail test.

Corrected S.E. refers to corrected standard errors using the deviance parameter.
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Table 5: Zero-Inflated Negative Binomial with Industry Dummies

Variable (1) (2) (3) (4) (5)
Log(PAT)
KNOWCAP 0.0097" 0.0088" 0.0163" 0.0061 0.0072
(0.0052) (0.0047) (0.0095) (0.0093) (0.0093)
PATEXP 0.0134™ 0.0153" 0.0129™" 0.0130"""
(0.0060) (0.0066) (0.0049) (0.0047)
KNOWCAP x PATEXP —0.0001 —0.00004 —0.00005
(0.0001) (0.0001) (0.0001)
PROFIT 0.0082""" 0.0060""
(0.0022) (0.0024)
SPILLOVER 0.0032"""
(0.0009)
Intercept —-0.6941 -0.5617 —0.5858 —-0.3946 —-0.4400
(0.3953) (0.3930) (0.3989) (0.3989) (0.3879)
Inflate
KNOWCAP —-0.2038 -0.2307 —-0.2332 —-0.2007 —-0.2061
(0.1638) (0.2062) (0.2297) (0.1973) (0.2010)
PATEXP -2.0926™"  -2.3590""  -2.3878""  -2.4293"" -2.3576""
(0.7224) (0.6440) (0.6390) (0.5823) (0.5914)
PROFIT -0.0103" -0.0137° -0.0141" -0.0112" -0.0176"
(0.0061) (0.0079) (0.0080) (0.0071) (0.0013)
Intercept 2.3394™ 2.6300"" 2.2983™" 2.2636™" 2.2918"
(0.2894) (0.2324) (0.3161) (0.3138) (0.3144)
a 2.5382"" 2.4305 ™ 2.4382"" 2.2381"" 2.1650""
(0.4884) (0.4237) (0.4273) (0.3619) (0.3660)
N 3800 3800 3800 3800 3800
Year Dummies Yes Yes Yes Yes Yes
P — value (all slopes 0) 0.0000 0.0000 0.0000 0.0000 0.0000
Robust S.E. Yes Yes Yes Yes Yes

Note: *** ** * denote significance at the 1%, 5% and 10% levels using a two-tail test;

and " denotes significance at the 10% using a one-tail test

28



Table 6: Zero-Inflated Negative Binomial versus Negative Binomial

Model AIC BIC Vuong  Vuong Vuong Mean Absolute Difference
(with AIC (with BIC between Observed and
correction) correction) Predicted Count

ZINB 3269.068 3525.021 8.079"" 7.890"" 7.299"" 0.002

NB 4283.759 4508.498 0.001

Note: *** ** * denote significance at the 1%, 5% and 10% levels using a two-tail test;
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Table 7: Linear Feedback Models

Variable (1) (2)
Negative Zero-Inflated
Binomial Negative Binomial
Log(PAT)
KNOWCAP 0.0275™ 0.0061
(0.0126) (0.0095)
PATEXP 0.0205™" 0.0116™"
(0.0061) (0.0045)
KNOWCAP « PATEXP -0.0003" —0.00003
(0.0001) (0.00008)
PROFIT 0.0079""" 0.0054™""
(0.0025) (0.0021)
SPILLOVER 0.0033"" 0.0035™"
(0.0009) (0.0009)
L_PRE_SAM_PAT 0.4757" 0.3985"
(0.3640) (2523)
NO_PRE_SAM_PAT -0.8174" 0.2193
(0.4621) (0.4803)
Intercept -1.3020" -0.7351"
(0.5304) (0.5484)
Inflate
KNOWCAP -0.1928
(0.2025)
PATEXP -2.3294™
(0.5777)
PROFIT -0.0132"
(0.0080)
Intercept 2.2805™"
(0.3368)
a 2.1220™
(0.3813)
N 3800 3800
Year Dummies Yes Yes
Industry Dummies Yes Yes
P — value (all slopes 0) 0.0000 0.0000
Robust S.E. Yes Yes
AIC 4195.377 3269.427
BIC 4432.602 3537.866
Vuong 7.397"
Vuong (with AIC correction 7.212""
Vuong (with BIC correction 6.634""
Mean Absolute Dif ference 0.001 0.002

between Observed and Predicted Count

Note: *** ** * denote significance at the 1%, 5% and 10% levels
using a two-tail test; and " denotes significance at the 10%

using a one-tail test
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Endnotes

1 What is ‘waste’ in this context is often not clear; there might be some ‘learning-by-doing’
from the expenditure made, even when no innovation results from it.

2 This is not to imply that researchers are unaware of the limitations of patent counts as
measures of innovation. First, not all innovations are patentable. Second, even when they
are they may not be patented, either because patenting may be costly and/or because firms
may be apprehensive about disclosing the innovation in the patent document (Horstman et
al. 1985, Harter 1993). As a result, patent propensity (or the percentage of innovations that
are patented) may vary across industries and firms, so that patent counts may over- or
under-estimate innovation for a given sector. Third, to the extent that patents are used for
strategic purposes, they may not reflect innovativeness per se (Hall and Ziedonis 2001, Blind
et al. 2006). Fourth, not all patents are commercialized, which may be a drawback when the
focus is on quantifying the impact of innovation on, for instance, productivity growth. Thus,
patents are imperfect measure of innovation, but so also are the competing measures.

3 To jump ahead momentarily, our data set does not provide information on the patents
that were filed but were rejected by the patent office.

4 For a small number of firms the R&D data were interpolated if the gap was for one or two
years at most. Firms for which the gap was larger were not included in the sample.

> While the increase in the expected patent count as the result of a one unit increase in the
knowledge capital stock would be much larger at 4.3% if we use the negative binomial
results instead, in absolute terms even that would be a very small increase over the mean
patent count for our sample. Moreover, the associated elasticity at the means is still small at

0.03, as compared to 0.02 for the zero-inflated model.
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