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Abstract 

 

This paper measures carbon-sensitive efficiency and productivity growth in technologically 

heterogeneous coal-fired thermal power plants in India for the period of 2000 to 2013. It uses 

a unique data set of 56 plants, obtained petitioning the Right to Information Act 2005. We 

apply ‘within-MLE’ fixed effects stochastic frontier model to get consistent estimates of meta-

directional output distance function. The thermal power plants are grouped in two categories: 

central sector and state sector. We find that the state sector plants have higher potential to 

simultaneously increase electricity generation and reduce carbon emission than the central 

sector plants. If all the state and central sectors plants were made to operate on the meta-

frontier, reduction of 98 million tonnes of CO2 could have been achieved. Carbon-sensitive 

productivity growth in the central sector plants is higher than the plants in state sector, though 

in both the sectors productivity growth is governed by carbon-sensitive innovation effect. 

Commercialisation or autonomy in electricity generation also induces carbon-sensitive 

productivity growth and reduces carbon-sensitive productivity growth gap.   
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Key Words: Carbon-sensitive productivity, Luenberger productivity indicator, Stochastic 

meta-frontier, Indian thermal power plants 
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1. Introduction 

 

India, with a population of about 1.3 billion, has approximately 240 million people without 

access to electricity supply.1 Yet India is the fourth largest emitter of green house gases, behind 

China, USA and European Union. At the Paris Agreement in 2015, India pledged to reduce 

CO2 emissions intensity, measured as CO2 emissions per unit of gross domestic product (GDP), 

by 30-35 percent by 2030 relative to 2005. Coal-based thermal power generation accounts for 

about two-third of total electricity production and contributes about half of the CO2 emissions 

generated in the country. Therefore, it is imperative to improve performance of Indian thermal 

power plants with respect to CO2 emissions. This paper intends to measure carbon-sensitive 

efficiency and productivity of these plants.2 

 

Studies, undertaken to measure carbon-sensitive efficiency and productivity, generally assume 

that production units share a common production frontier (e.g., Färe et al. 2005, Lee 2005, 

Sueyoshi et al 2010, Sueyoshi and Goto 2013, Murty et al. 2007, Yang and Pollitt 2009, Wei 

et al. 2013, Kumar and Managi 2016, Jain and Kumar 2018). They do not consider 

technological heterogeneity among plants, which are due to differences in ownership, fuel mix, 

technology, size, vintage and region of operation etc. Studies, which account for group 

heterogeneity in thermal power sector, are based on deterministic measures of efficiency and 

productivity (e.g., Du et al. 2016, Zhang and Wang 2015) and thus ignore measurement errors.3  

 

The assumption of common production frontier produces biased estimates of efficiency and 

productivity, if the sample plants use different production processes or are of different vintages 

(Hayami 1969, Hayami and Ruttan 1970, Pitttman, 1981). Meta-production frontier analysis 

could be a possible way to consider plant-level heterogeneity (Battese et al. 2004, O’Donnell 

et al. 2008, Huang et al. 2014, Juo et al. 2015). It envelopes commonly conceived production 

frontiers and addresses the concerns arising out of incomparability of the performance of 

various groups. It allows estimation of technical efficiency of a production unit relative to 

group-specific technology and also technological gap with respect to the best practice 

technology (Kumbhakar et al., 2015). 

 

To measure group-specific carbon-sensitive productivity, we use Luenberger Productivity 

Indicator (LPI), derived from directional output distance function (DODF), which does not 

require price information. LPI is decomposed into efficiency change (catch-up effect) and 

technological change (innovation effect). We use stochastic meta-frontier to estimate the gap 

between group-specific frontier and the best practice technology. Meta-Luenberger 

Productivity Indicator (LPIM) is sum of group-specific Luenberger Productivity Indicator 

(LPIG) and productivity growth gap indicator (PGG). Zhang and Wang (2015) further 

decompose PGG into efficiency change gap (INECG) and technological change gap (TCG).  

 

                                                           
1 For carbon emissions, please see https://www.carbonbrief.org/guest-post-why-indias-co2-emissions-grew-

strongly-in-2017 (as accessed on March 30, 2018) and for energy access see the following link 

http://www.livemint.com/Industry/mf6g1hQV6OlV6HIW5mQTiN/Indias-economic-growth-is-linked-to-the-

fortunes-of-the-ene.html (as accessed on March 13, 2018). 
2 Carbon-sensitive efficiency and productivity measures incorporate both electricity and CO2 emissions with the 

assumption of weak disposability of CO2 emissions.  
3 Studies involving meta-frontier analysis in the thermal power sector are limited, but there are many studies in 

other areas, such as energy efficiency (e.g., Lin and Du, 2013), agriculture (e.g., Chen and Song, 2008), dairy 

farming (e.g., Moreira and Bravo-Ureta, 2010), credit unions (e.g., Juo et al, 2015) etc. Most of the studies apply 

non-parametric deterministic measures of productivity measurement such as Data Envelopment Analysis (DEA). 

https://www.carbonbrief.org/guest-post-why-indias-co2-emissions-grew-strongly-in-2017
https://www.carbonbrief.org/guest-post-why-indias-co2-emissions-grew-strongly-in-2017
http://www.livemint.com/Industry/mf6g1hQV6OlV6HIW5mQTiN/Indias-economic-growth-is-linked-to-the-fortunes-of-the-ene.html
http://www.livemint.com/Industry/mf6g1hQV6OlV6HIW5mQTiN/Indias-economic-growth-is-linked-to-the-fortunes-of-the-ene.html
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In India, state and central sectors account for 34.06 and 27.55 percent of total coal-based 

electricity generation capacity as of January 2017; rest of the production capacity being owned 

by private sector.4 We exploit plant-level unbalanced panel data of 56 thermal power plants 

(37 plants owned by the various state governments and 19 plants owned by the central 

government, mainly National Thermal Power Corporation (NTPC)), for the period 2000 to 

2013. We have classified the plants into two groups: central sector and state sector.  We 

measure carbon-sensitive efficiency and productivity for the two groups, incorporating 

technological heterogeneity.  

 

Estimation of meta-frontier involves two steps. In the first step, we estimate the production 

frontier for each group separately using stochastic frontier analysis (SFA). In the second step, 

we estimate meta-frontier enveloping both groups. Battese et al (2004) and O’Donnell et al 

(2008) involve stochastic approach in the first step but employ mathematical programming 

approach in the second step. Du et al. (2016) and Zhang and Wang (2015) use the programming 

approach in both the steps. Programming approach fails to differentiate between technical 

efficiency and technological gap arising out of random shocks. Therefore, following Huang et 

al. (2014), we estimate both the steps econometrically. Huang et al. have proposed stochastic 

meta-frontier in production function context and for measuring technology gap (TG). We have 

extended the same for measuring carbon-sensitive efficiency and productivity using DODF. 

SFA has advantages over mathematical programming, since the statistical properties of the 

estimates are known to draw relevant statistical inferences. 

 

We find absence of technical inefficiency, also known as managerial inefficiency, within the 

central sector group, while it is about three percent in state sector group. If the state sector 

plants were operating at the group-specific frontiers, India could have reduced 54 million tons 

of CO2 emissions. The country could have reduced 98 million tons carbon emissions if all the 

plants (Central and State Sectors) were operating at the meta-frontier. Group-specific frontiers 

of central and state sectors were almost equally distanced from the meta-frontier. Moreover, 

we find that in central sector, carbon-sensitive productivity growth was driven only by 

innovations, while in state sector, the productivity growth was attributed to both catch-up and 

innovation effects. We find that group specific frontier of the central sector tries to catch-up 

the meta-frontier over time. It is also noticed that the central sector was more carbon-sensitive 

innovative than the state sector. The meta-productivity growth in the central sector was also 

0.6 percent per annum whereas for the state sector it was about two-third of the central sector. 

We also observe that carbon-sensitive productivity growth in the Indian thermal power sector 

is dominated by innovation effect.   

 

The paper is organised as follows: Section 2 describes the methodology of stochastic meta-

Luenberger Productivity Indicator for measuring carbon-sensitive group-specific and meta-

productivity measures. Section 3 discusses the meta-stochastic frontier estimation approach. 

Process of obtaining the required information and discussion on variables, used in the study, is 

carried out in Section 4. Section 5 discusses estimated results of efficiency and productivity in 

India’s thermal power industry. Section 6 concludes the paper. 

  

 

 

                                                           
4 The information on ownership of coal based electricity is obtained from:  

http://www.cea.nic.in/reports/monthly/executivesummary/2017/exe_summary-01.pdf (as accessed on February 

24, 2018). We could not include private sector owned plants in the study due to non-availability of plant level 

data. 

http://www.cea.nic.in/reports/monthly/executivesummary/2017/exe_summary-01.pdf
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2. Methodology 

 

2.1 Directional Output Distance Function 

 

Suppose that a thermal power plant generates a vector of good outputs 𝑦 = (𝑦1, …… , 𝑦𝑀) ∈

ℜ+
𝑀 and bad outputs 𝑏 = (𝑏1, …… , 𝑏𝐽) ∈ ℜ+

𝐽
 using a vector of inputs 𝑥 = (𝑥1, …… , 𝑥𝑁) ∈ ℜ+

𝑁. 

The environmental production technology is defined as: 

 

𝑃(𝑥) = {(𝑦, 𝑏): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)}, 𝑥 ∈ ℜ+
𝑁    (1) 

 

It is assumed that production technology satisfies the standard assumptions of compactness and 

free disposability in inputs (Färe et al., 2005). Since production technology generates both good 

and bad outputs, the assumptions of null-jointness in good and bad outputs and weak 

disposability of bad outputs are taken. The assumption of null-jointness implies that in a coal-

based thermal power plant CO2 emissions are inevitably produced when the plants generate 

electricity, i.e., 𝑖𝑓 (𝑦, 𝑏) ∈ 𝑃(𝑥) 𝑎𝑛𝑑 𝑖𝑓 𝑏 = 0, 𝑡ℎ𝑒𝑛 𝑦 = 0. Moreover, it is assumed that 

reduction of electricity without reducing CO2 emissions is possible i.e. 𝑖𝑓 (𝑦, 𝑏) ∈
𝑃(𝑥), 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑦0 ≤ 𝑦, (𝑦0, 𝑏) ∈ 𝑃(𝑥). However, reduction in CO2 emissions requires either 

simultaneous reduction in electricity or increase in input usage, i.e., electricity and CO2 

emissions are jointly weakly disposable: 𝑖𝑓 (𝑦, 𝑏) ∈ 𝑃(𝑥) 𝑎𝑛𝑑 0 ≤ 𝛼 ≤ 1, 𝑡ℎ𝑒𝑛 (𝛼𝑦, 𝛼𝑏) ∈
𝑃(𝑥).  
  

To measure carbon-sensitive efficiency and productivity, we use directional output distance 

function (DODF) as an analytical tool. DODF is defined as maximal distance between actual 

input-output vector and frontier of the output set in a given directional vector 𝑔 ≡ (𝑔𝑦, −𝑔𝑏), 

i.e. 

   

𝐷⃗⃗ 𝑂(𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) = sup {𝛽 ∶ (𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑃(𝑥)}   (2) 

 

where 𝛽 is non-negative factor, scaled to reach the boundary of the output set 𝑃(𝑥).  DODF 

seeks simultaneous maximal expansion of good outputs and reduction in bad outputs. Note that 

DODF is an additive measure of inefficiency in a given direction g. A zero value of 𝛽 implies 

absence of technical inefficiency, whereas a positive value of 𝛽 reflects the presence of 

technical inefficiency. It is assumed that DODF is jointly concave in good and bad outputs and 

non-negative and non-increasing in good outputs and non-decreasing in bad outputs and inputs. 

DODF also satisfies translation property. 

 

𝐷⃗⃗ 𝑂(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏 , 𝑥;  𝑔𝑦, −𝑔𝑏) = 𝐷⃗⃗ 𝑂(𝑦, 𝑏, 𝑥; 𝑔𝑦, −𝑔𝑏) − 𝜔  (3) 

 

where 𝜔 is an arbitrary scaling factor. Translation property implies that if good outputs are 

expanded by 𝜔𝑔𝑦 and bad outputs are reduced by 𝜔𝑔𝑏 then the resulting value of directional 

output distance function get reduced by 𝜔. 

 

 

2.2 Luenberger Productivity Indicator (LPI) 

 

Carbon-sensitive productivity is generally measured using Malmquist-Luenberger (ML) 

productivity indexes. ML indexes are ratio-based measures of productivity growth and 

overestimate productivity changes (Bousssemart et al. 2003). Instead, we use difference-based 
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Luenberger Productivity Indicator (LPI) to measure productivity changes in Indian thermal 

power sector. LPI was first proposed by Chambers et al. (1996). LPI can be expressed as a 

Bennet-Bowley Indicator (Färe et al. 2008) and is more robust than ML productivity index 

(Fujii et al. 2014, Kumar and Managi 2009b).  

 

Considering a case of three inputs, one good output (electricity) and one bad output (CO2 

emissions), we parameterize directional output distance function (DODF) in a quadratic form. 

Inter-period changes in DODF, applying Diewert (1976) quadratic lemma, can be expressed 

as: 

 

(𝐷⃗⃗ 𝑡 − 𝐷⃗⃗ 𝑡+1) = 0.5 [
𝜕𝐷⃗⃗ 𝑡

𝜕𝑦
+
𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑦
] (𝑦𝑡 − 𝑦𝑡+1) + 0.5 [

𝜕𝐷⃗⃗ 𝑡

𝜕𝑏
+
𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑏
] (𝑏𝑡 − 𝑏𝑡+1) +

0.5∑ [
𝜕𝐷⃗⃗ 𝑡

𝜕𝑥
+
𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑥
] (𝑥𝑡 − 𝑥𝑡+1)3

𝑛=1 − 0.5 [
𝜕𝐷⃗⃗ 𝑡

𝜕𝑡
+
𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑡
]     (4) 

 

where D is short form of D (y, b, x; g, t). 

      

LPI, the productivity growth index is generally defined as difference of weighted 

average rates of growth in outputs and inputs, where the weights are the derivatives of 

directional output distance function with respect to good output, bad output and inputs 

respectively. 

 

𝐿𝑃𝐼 = 0.5 [
−𝜕𝐷⃗⃗ 𝑡

𝜕𝑦
+
−𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑦
] (𝑦𝑡+1 − 𝑦𝑡) − 0.5 [

𝜕𝐷⃗⃗ 𝑡

𝜕𝑏
+
𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑏
] (𝑏𝑡+1 − 𝑏𝑡) − 0.5∑ [

𝜕𝐷⃗⃗ 𝑡

𝜕𝑥
+
𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑥
] (𝑥𝑡+1 − 𝑥𝑡)3

𝑛=1                                                                              

(5) 

 

 Equation (5) is rearranged as: 

 

𝐿𝑃𝐼 = (𝐷⃗⃗ 𝑡 − 𝐷⃗⃗ 𝑡+1)⏟        
𝐸𝐹𝐹𝐶 𝑜𝑟 𝑐𝑎𝑡𝑐ℎ−𝑢𝑝 𝑒𝑓𝑓𝑒𝑐𝑡

+ 0.5 [
−𝜕𝐷⃗⃗ 𝑡

𝜕𝑡
+
−𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑡
]⏟            

𝑇𝑃 𝑜𝑟 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡

    (6) 

 

Equation (6) provides a decomposition of LPI into efficiency change (EFFC) and 

technical change (TP). Positive value of EFFC implies technical efficiency 

improvement. DODF is a measure of technical inefficiency, a negative value of the 

derivative of DODF with respect to time implies an outward shift of production frontier, 

i.e., technical progress. For the sake of interpretation, we multiply the estimates of 

technical progress with minus one. Therefore, the positive value of each of the 

components and of LPI implies an improvement in TFP. 

  

 

2.3 Meta Luenberger Productivity Indicator (LPIM) 

 
Given the concepts of DODF and LPI and its decomposition, group specific and meta-DODF 

and productivity change measures needs to be defined. Note that group is specified based on 

the group-specific observations, whereas the meta-frontier is constructed using all the 

observations of all the groups enveloping all group-frontiers. Group-specific and meta- 

production technology sets are defined as follows, respectively: 

 

𝑃𝐺(𝑥) = {(𝑦, 𝑏): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)}      (7) 
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𝑃𝑀(𝑥) = {(𝑦, 𝑏): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)}     (8) 

 

where 𝑃𝑀 = (𝑃1 ∪ 𝑃2 ∪ …… .∪ 𝑃𝐺); 
 

Group-specific DODF and meta-DODF are defined as follows: 

 

𝐷⃗⃗ 𝑂
𝐺
(𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) = sup{𝛽 ∶ (𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑃(𝑥)}  (9) 

 

and 

 

𝐷⃗⃗ 𝑂
𝑀
(𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) = sup {𝛽 ∶ (𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑃(𝑥)}  (10) 

 

Group-specific DODF and meta-DODF measure technical inefficiency of thermal power plants 

relative to group-specific and meta-production frontiers. The difference between meta and 

group-directional output distance functions measures technology gap (TG)5: 

 

𝑇𝐺 = 𝐷⃗⃗ 𝑂
𝑀
(𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) − 𝐷⃗⃗ 𝑂

𝐺
(𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏)   (11) 

 

 Larger value of TG indicates that the less advanced technology is adopted by plants in a 

specific group relative to best available technology and vice-versa. 

 

Group-specific and meta- Luenberger productivity indicators (LPI) can be defined as: 

 

𝐿𝑃𝐼𝐺 = (𝐷⃗⃗ 𝑡 − 𝐷⃗⃗ 𝑡+1)
𝐺

⏟        
𝐸𝐹𝐹𝐶𝐺

+ 0.5 [
−𝜕𝐷⃗⃗ 𝑡

𝜕𝑡
+
−𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑡
]
𝐺

⏟            
𝑇𝑃𝐺

     (12) 

 

and 

 

𝐿𝑃𝐼𝑀 = (𝐷⃗⃗ 𝑡 − 𝐷⃗⃗ 𝑡+1)
𝑀

⏟        
𝐸𝐹𝐹𝐶𝑀

+ 0.5 [
−𝜕𝐷⃗⃗ 𝑡

𝜕𝑡
+
−𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑡
]
𝑀

⏟            
𝑇𝑃𝑀

                (13) 

 

Where EFFCG and EFFCM are group-specific and meta-inefficiency changes, and TPG and TPM 

depict group-specific and meta-technological progress. The difference between 𝐿𝑃𝐼𝑀 

and 𝐿𝑃𝐼𝐺 , termed as productivity growth gap (PGG) indicator, is a measure of changes in 

carbon-sensitive productivity growth gap between group-frontier and meta-frontier over time 

(Zhang and Wang 2015).  

 

𝐿𝑃𝐼𝑀 = 𝐿𝑃𝐼𝐺 + 𝑃𝐺𝐺         (14) 

 

A positive value of PGG indicates a decrease in productivity growth gap between group-

specific and meta-frontier measures of productivity growth. By combining equations (12) and 

(13), the PGG can be decomposed into efficiency change gap (ECG) and technical change gap 

(TCG): 

                                                           
5 TG measures gap between current and potential technologies adopted by the plants 
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𝑃𝐺𝐺 = {(𝐷⃗⃗ 𝑡 − 𝐷⃗⃗ 𝑡+1)
𝑀
− (𝐷⃗⃗ 𝑡 − 𝐷⃗⃗ 𝑡+1)

𝐺
}⏟                    

𝐸𝐶𝐺 𝑜𝑟 𝑃𝑇𝐶𝑈

+ {0.5 [
−𝜕𝐷⃗⃗ 𝑡

𝜕𝑡
+
−𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑡
]
𝑀

− 0.5 [
−𝜕𝐷⃗⃗ 𝑡

𝜕𝑡
+
−𝜕𝐷⃗⃗ 𝑡+1

𝜕𝑡
]
𝐺

}
⏟                              

𝑇𝐶𝐺 𝑜𝑟 𝐹𝐶𝑈

     (15) 

 

The first term on the right hand side of equation (15) measures the change in technology gap 

(TG) overtime and the second term captures the speed of the change in group-specific 

technology relative to meta-technology. A positive value of ECG indicates a decrease in the 

technology gap. Similarly, a positive value of TCG indicates that the speed of meta-frontier 

shift is faster than the group-frontier, i.e., a reduction of innovation gap. Chen and Young 

(2010) have termed the reduction in technology gap as or pure technological catch-up (PTCU) 

and reduction in innovation gap as frontier catch-up (FCU).  

 

  

3. Estimation Strategy 

 

3.1 Econometric Estimation of DODF 

 

To obtain estimates of carbon-sensitive productivity growth and technology gap, we estimate 

DODF econometrically. We employ quadratic form of DODF since it is more generalized, it 

outperforms relative to translog or linear forms (Färe et al., 2010) and accommodates 

translation property (Färe et al., 2006).6 The quadratic form of DODF is expressed as: 

 

𝐷⃗⃗ 𝑜
𝑘𝑡(𝑦𝑘𝑡, 𝑏𝑘𝑡, 𝑥𝑘𝑡; 1, −1, 𝑡) = 𝛼𝑘 + ∑ 𝛼𝑛𝑥𝑛

𝑘𝑡𝑁
𝑛=1 + 𝛽1𝑦

𝑘𝑡 + 𝛽2𝑏
𝑘𝑡 + 𝛾1𝑡 +

1

2
∑ 𝛼𝑛𝑛′
𝑁
𝑛=1 𝑥𝑛

𝑘𝑡𝑥𝑛′
𝑘𝑡 + ∑ 𝛿𝑛1𝑥𝑛

𝑘𝑡𝑦𝑘𝑡𝑁
𝑛=1 + ∑ 𝛿𝑛2𝑥𝑛

𝑘𝑡𝑏𝑘𝑡𝑁
𝑛=1 +

1

2
𝛽11𝑦

𝑘𝑡𝑦𝑘𝑡 + 𝛽12𝑦
𝑘𝑡𝑏𝑘𝑡 +

1

2
𝛽22𝑏

𝑘𝑡𝑏𝑘𝑡 +
1

2
𝛾11𝑡

2 + ∑ 𝛾𝑛1𝑥𝑛
𝑘𝑡𝑡𝑁

𝑛=1 + 𝛾𝑦1𝑦
𝑘𝑡𝑡 + 𝛾𝑏1𝑏

𝑘𝑡𝑡    (16) 

 

where 𝐷⃗⃗ 𝑜
𝑘𝑡(. ) is the DODF for thermal power plant k in year t; 𝑦𝑘𝑡is electricity generated at 

plant k in year t; 𝑏𝑘𝑡 is CO2 emissions produced at plant k in year t; and 𝑥𝑛
𝑘𝑡is the nth input use 

at plant k in year t (n= capital, wage bill, and consumption of coal). For the symmetric and 

translation properties to hold, the parameters of the DODF need to satisfy the following 

conditions: 

 

 𝛼𝑛𝑛′ = 𝛼𝑛′𝑛;  𝛽1 − 𝛽2 = −1; 𝛽11 = 𝛽12 = 𝛽22;  𝛾11 = 𝛾𝑦1 = 𝛾𝑏1;  𝛿𝑛1 = 𝛿𝑛2  

 

Time-trend variable captures exogenous technological changes. The specification (16) allows 

for neutral and biased TP. The effect of neutral TP is captured by the coefficients 1 and 11. 

The extent of input biased TP is estimated by the coefficients 𝛾𝑛1. The effects of changes in 

output bias TP is estimated by the coefficients 𝛾𝑦1 𝑎𝑛𝑑 𝛾𝑏1.  
 

The stochastic specification of directional output distance function takes the form; 

 

𝐷⃗⃗ 𝑜
𝑘𝑡 = 𝑓(𝑦𝑘𝑡, 𝑏𝑘𝑡, 𝑥𝑘𝑡; 1, −1, 𝑡) + 𝑣     (17) 

 

where v is an error term, 𝑣~𝑁(0, 𝜎𝑣
2) .   

 

                                                           
6 Translation property is used while estimating DODF using stochastic frontier analysis (SFA) (Kumar et al.2015). 
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Since 𝐷⃗⃗ 𝑜
𝑘𝑡 is unobservable, to estimate equation (16), we utilise the translation property of the 

directional output distance function expressed in equation (3). By substituting 𝑓(𝑦 + 𝜔𝑔𝑦, 𝑏 −

𝜔𝑔𝑏 , 𝑥;  𝑔𝑦, −𝑔𝑏 , 𝑡) + 𝜔 for 𝐷⃗⃗ 𝑜
𝑘𝑡(𝑦𝑘𝑡, 𝑏𝑘𝑡, 𝑥𝑘𝑡; 1, −1, 𝑡) in equation (16) and taking 𝜔 to the left 

hand side, we obtain; 

 

−𝜔 = 𝑓(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏, 𝑥;  𝑔𝑦, −𝑔𝑏 , 𝑡) + 𝑣 − 𝑢   (18) 

 

where 𝑓(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏 , 𝑥; 𝑔𝑦, −𝑔𝑏 , 𝑡) is the quadratic form given by (16) with 𝜔 added 

to y and subtracted from b; and u=𝐷⃗⃗ 𝑜
𝑘𝑡 is one-sided error term, 𝑢~𝑁+(0, 𝜎𝑢

2). Thus, one is able 

to obtain variation on the left-hand side by choosing 𝜔 that is specific to each plant. We choose 

CO2 variable as 𝜔 and estimate equation (16) using stochastic frontier framework. 

 

 

3.2 Econometric Estimation of Meta-DODF 

 

We follow Huang et al. (2014) for the stochastic estimation of meta-frontier. Estimation of 

meta-DODF involves two steps: first, we estimate group-specific DODF using the framework 

described above in Section 3.1. The second step involves estimation of meta-DODF. Following 

Huang et al. (2015), DODF from equation (11) can be reformulated as: 

 

𝐷⃗⃗ 𝑜
𝐺∗(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏 , 𝑥;  𝑔𝑦, −𝑔𝑏 , 𝑡) = 𝐷⃗⃗ 𝑜

𝑀∗(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏 , 𝑥;  𝑔𝑦, −𝑔𝑏 , 𝑡) − 𝑇𝐺  (19) 

 

Though the true value of 𝐷⃗⃗ 𝑜
𝐺∗(. ) is unknown, its estimated value, 𝐷⃗⃗̂ 𝑜

𝐺∗(. ) can be obtained by 

estimating equation (18), which leads to:  

 

𝐷⃗⃗ 𝑜
𝐺∗(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏 , 𝑥;  𝑔𝑦, −𝑔𝑏 , 𝑡) = 𝐷⃗⃗̂

 
𝑜
𝐺∗(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏 , 𝑥; 𝑔𝑦, −𝑔𝑏 , 𝑡) + 𝑉

𝑀  (20) 

 

where 𝑉𝑀 = 𝜀 − 𝜀̂, denotes the random error arising from the estimation of equation (19) with 

mean zero and a non-constant variance (Huang et al., 2015). Now substituting equation (20) in 

equation (19), we obtain: 

 

𝐷⃗⃗̂ 𝑜
𝐺∗(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏 , 𝑥;  𝑔𝑦, −𝑔𝑏 , 𝑡) = 𝐷⃗⃗ 𝑜

𝑀∗(𝑦 + 𝜔𝑔𝑦, 𝑏 − 𝜔𝑔𝑏 , 𝑥;  𝑔𝑦, −𝑔𝑏 , 𝑡) + 𝑉
𝑀 − 𝑈𝑀  (21)

                     

 

where 𝑈𝑀 = 𝑇𝐺.  
 

Equation (21) resembles the standard stochastic frontier model and is estimated using SFA 

framework. The one-sided non-negative error term 𝑈𝑀 is assumed to be distributed half-

normal, i.e., 𝑈𝑀~𝑁+(0, 𝜎2
𝑈), and independent of 𝑉𝑀 . The estimates of meta-inefficiency or  

𝐷⃗⃗ 𝑜
𝑀 can be obtained as:  𝐷⃗⃗ 𝑜

𝑀 = 𝐷⃗⃗ 𝑜
𝐺 + 𝑇𝐺. 

 

We use panel data stochastic frontier models to estimate the parameters of the quadratic 

distance functions and the values of DODFs, described in equations (18) and (21). The 

advantage of panel data models is that they are able to distinguish between time-variant and 

time-invariant effects, which constitute an important part of individual heterogeneity, though 

both the effects are unobservable. Earlier panel data stochastic frontier models confounded 

individual heterogeneity with inefficiency (e.g., Schmidt and Sickles, 1984).  
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Green (2005a, 2005b) proposes ‘true fixed effect’ models to differentiate between individual 

heterogeneity and inefficiency. ‘True fixed effect’ model is essentially a standard fixed effect 

panel data model supplemented by inefficiency effect; inefficiency effect is variable over time 

and over cross-sections. Wang and Ho (2010) and Chen et al. (2014) point out that true fixed 

effect model may suffer from incidental parameters problem. In the case of maximum 

likelihood estimation (MLE), though the parameter estimates remain unbiased, ‘MLE’s of the 

error variances are biased’ (p66, Chen et al, 2014). In SFA, the error variances are essential 

components of the inefficiency term, which are extracted from the composite error term. 

 

The literature suggests ‘transform the model by first-differencing or by within-transforming’ 

to remove incidental parameters before estimation. We apply ‘within-MLE’ SFA model 

proposed by Chen et al. (2014), to estimate group specific and meta- quadratic DODFs. ‘Within 

MLE’ removes incidental parameters before estimation and produces consistent estimates of 

parameters and error variances for fixed time periods by maximizing the likelihood function 

based on the joint density of the deviations from the individual means of the composite error 

term, 𝜀 (Chen et al. 2014). 

        

 

4. Data 

 

Electricity sector is in Concurrent List7 of Indian Constitution. Both, central and state 

governments are involved in generation of electricity in the country. During early 1990s, 

electricity sector was opened for private sector as a part of reform and restructuring process to 

bring efficiency and competition in the sector. In coal-based electricity generation, share of 

central, state and private sector was about 27.55, 34.06 and 38.39 percent as of January 2017. 

The central sector has been involved in electricity generation through public sector enterprises 

(PSEs), mainly National Thermal Power Corporation (NTPC) which has more than 50 GW 

capacity of electricity generation with 19 coal-based plants.8 

 

Central Electricity Authority (CEA) is supposed repository of all the required information, as 

Section 74 of the Electricity Act, 2003 mandates every generating company or person to furnish 

all information to CEA as it may require. Other possible sources for the information are Central 

Electricity Regulatory Commission (CERC), a body for regulation of tariffs of generating 

companies and the websites of individual thermal power plants or companies. However, none 

of these sources provided complete information of the required variables at the plant level. 

Therefore, to get the required information, we had to petition the Right to Information (RTI) Act 

2005, besides approaching these sources.9 

 

Initially we made a list of 98 thermal power plants; 87 Central government or state government 

or jointly owned and 11 privately owned thermal power plants, and sent the request for the 

requisite information to these plants under the RTI Act 2005 for the period of 1999 to 2013 in 

                                                           
7 In India, the division of responsibilities between central (federal) and state governments is governed by the 

Constitution of India. Seventh Schedule and Article 246 of the Constitution of India divides the subject areas in 

three lists: Union List, State List and Concurrent List. Under the Concurrent List, both central and state legislatures 

can enact laws on wide ranging subjects including electricity generation (Kumar and Managi, 2009a).   
8 https://economictimes.indiatimes.com/industry/energy/power/indias-15-generation-capacity-is-now-from-

ntpc/articleshow/57791935.cms (as accessed on March 09, 2017).  
9 According to the Right to Information (RTI) Act 2005, it is mandatory for the governments in India to provide 

information related to government and public sector in a timely manner. (http://righttoinformation.gov.in/). 

https://economictimes.indiatimes.com/industry/energy/power/indias-15-generation-capacity-is-now-from-ntpc/articleshow/57791935.cms
https://economictimes.indiatimes.com/industry/energy/power/indias-15-generation-capacity-is-now-from-ntpc/articleshow/57791935.cms
http://righttoinformation.gov.in/
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2014.10 Only government owned 56 plants responded back with some information since the RTI 

Act is applicable only to public sector. NTPC sent information only for power generation and 

other performance indices i.e., operational availability, forced outage, planned maintenance, 

plant load factor (PLF)11 etc. Remaining information about thermal power plants run by NTPC, 

for the period 2008 to 2012, was obtained from the website of the CERC. We obtained data on 

CO2 emissions directly from the office of the CEA. Thus, using various sources, we ended up 

with information on an unbalanced panel of 56 thermal power plants for the period of 2000 to 

2013, comprising a total of 458 observations.   

  

We use plant level information on three inputs: capital, labour and coal, and two outputs: 

electricity and CO2 emissions for estimating DODF. Net electricity generation, measured in 

gigawatt hours (GWh), is the difference between gross electricity generation and auxiliary 

consumption of electricity in a plant. A power plant may be generating high gross electricity 

but high auxiliary power consumption, a measure of inefficiency, reduces the availability of 

electricity to the end user. CO2 emissions are measured in tons of the emissions produced by a 

plant. The CEA has been collecting the baseline data in order to facilitate the Clean 

Development Mechanism (CDM) projects since 2001.12  

 

In the sample plants, coal is the primary fuel in electricity generation process and is its 

consumption is measured in tons. We measure labour in terms of wage bill paid by a thermal 

power station during a year; wage bill information is available at current prices and is converted 

into constant prices using the labour wage index published by the Labour Bureau, Government 

of India.13 Following Dhryms and Kurz (1964), capital input employed in a thermal power 

station has been defined as: 

 

𝐾 = 𝑆𝐹𝑇/103 
 

where K: Capital measured in gigawatt hours (GWh); S: Capacity of a plant available during a 

year (MW); F = Operational availability factor; and T = number of hours in a year (i.e., 8000 

hours, Vogel and Kalb, 2010, p 17). However, note that in a thermal power plant, different units 

may be commissioned/decommissioned at different points of time in a year; therefore the 

capacity of a plant available during a year may differ from its nameplate capacity and is 

measured as: 

 

𝑆 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑎 𝑦𝑒𝑎𝑟

+∑(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟

× 𝑚𝑜𝑛𝑡ℎ𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 /12)

−∑(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑑𝑒𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟

× 𝑚𝑜𝑛𝑡ℎ𝑠 𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 /12) 
 

                                                           
10 In India, data on thermal power plants is available on the financial year basis, starting April of a year and closing 

in the March of following year. Therefore 1999 refers to 1999-2000 and 2013 refers to 2013-14.  
11 Plant Load Factor (PLF) is an indicator of capacity utilization and it depends on installed capacity, age of the 

plant, plant outrage, availability of fuel and water and past performance. It is defined as a ratio of actual electricity 

generation to electricity generation if the plants is working at its rated power for the entire year. PLF depends on 

installed capacity, age of the units, past performance, planned outages, availability of water/fuel, etc.  
12 CO2 Baseline Database for the Indian Power Sector, User Guide, Version 11.0, April 2016, CEA.  
13 http://labourbureaunew.gov.in/LBO_indtab.pdf as accessed on September 2015 

http://labourbureaunew.gov.in/LBO_indtab.pdf
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Table 1 provides the descriptive statistics of the variables and reveals that the average plant 

and unit size of a thermal power station in central sector are 1457 MW and 275 MW 

respectively, whereas in state sector the average plant size and average unit size are 769 MW 

and 161 MW respectively. Similarly, we observe large differences in the average values of 

auxiliary consumption of electricity, CO2 emission intensities and vintages between central 

and state sectors. The central sector plants are, on average, newer and have low auxiliary 

consumption and also low CO2 emission intensity in comparison to state sector plants. These 

statistics justify for the application of meta-frontier analysis. 

 

 

5. Results and Discussion 

 

To get group-specific and meta- estimates of LPI, we estimate different versions of DODF. We 

use mean normalized input and output data. Normalization of input and output data helps in 

minimizing the problems of convergence in estimation, given the numerical size of outputs and 

inputs (see Färe et al., 2005). This normalization implies ( , , ) (1, 1, 1)x y b   for a hypothetical 

thermal power plant that uses the mean level of inputs and produces the mean level of outputs.14 

 

Table 2 provides the parameter estimates of directional output distance function. We estimate 

four versions of the DODF. In version 1, we use pooled data of central and state sectors. 

Versions 2 and 3 present the estimates of DODF for the state and central sectors respectively. 

Meta-DODF parameter estimates are presented in version 4. 

 

We apply log-likelihood ratio (LR) test to test the null hypothesis that the two groups of thermal 

power sectors share a common production frontier. Table 2 shows that the value of log-

likelihood function for the DODF of the pooled data is 618.43, and the values of log-likelihood 

functions for the DODF of the data for central and state sectors are 195.48 and 469.93, 

respectively. The value of the LR test statistics 93.96 decisively rejects the null hypothesis of 

access to common production technology by both central and state-owned thermal power plants 

in India and vindicates the application of meta-DODF. We also find that, with the meta-DODF 

estimates, the statistically significant variance ratio of symmetric error term (𝜆̅ =

𝜎𝑣
2

(𝜎𝑢2 + 𝜎𝑣2)
⁄ ) rejects the null hypothesis of 𝑉𝑀 = 0, and supports the treatment of stochastic 

frontier approach in the second step of estimation over mathematical programming approach 

(Huang et al, 2014).15 Moreover we find that the ratio of variance of one-sided error term to 

total variance is statistically significant for the thermal plants of state sector, but it is 

insignificant for plant in central sector. It indicates the presence of technical inefficiency in 

state sector’s thermal power plants, but all the plants in central sector are operating at the 

frontier. This finding is reasonable since all the plants of central sector are managed by a single 

public sector undertaking namely, NTPC and variation in performance of these plants may be 

reflection of heterogeneity rather than their efficiency. We are also able to reject the null 

                                                           
14 The additive values of DODF cannot directly measure the distance of a particular observation to the frontier in 

percentage terms. Normalization of inputs and outputs helps in addressing this concern also (Du et al., 2016). 

15 In standard stochastic frontier analysis, the variance ratio (𝜆 =
𝜎𝑢
2

(𝜎𝑢
2 + 𝜎𝑣

2)
⁄ ) is used to test the null hypothesis 

of 𝑈𝑀 = 0, following Huang et al. (2014), we also use (𝜆̅ =
𝜎𝑣
2

(𝜎𝑢
2 + 𝜎𝑣

2)
⁄ ) to test the null hypothesis 𝑉𝑀 = 0, 

where 𝜆̅ = 1 − 𝜆. 
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hypothesis of 𝑈𝑀 = 0, in the case of meta-frontier implying the presence of techology gap 

(TG), i.e., sectoral frontiers of central and state sectors are enveloped by the meta-frontier.  

 

The parameter estimates of group-specific frontiers and meta-frontier reveal that quadratic 

DODF fits reasonably well in all the versions. Most of the coefficient estimates are statistically 

significant. In the group-specific estimates, we observe the presence of coal saving technical 

progress in state sector, but the coefficient estimates of technical progress are not statistically 

significant for central sector. For technology gap (TG) frontier, we were able to decisively 

reject the null hypotheses of absence of capital or coal saving technical progress, but could not 

reject the null hypothesis of labour-saving technical progress. 

 

 

5.1 Group Specific Inefficiency Estimates and Technology Gap 

 

Table 3 and Figures 1 report the estimates of DODF which demonstrate carbon-sensitive 

inefficiencies of Indian thermal power plants relative to the plants located on the frontier of 

their own group. We also report the inefficiency estimates for the pooled version of the DODF. 

The pooled version of model reveals that the thermal power plants owned by state governments 

are more inefficient than the central sector thermal power plants but the difference in 

performance is trivial. However the inefficiency estimates based on the group-specific frontiers 

reveal that within group all the central sector plants are on the frontier, but the plants in the 

state sector have potential to increase the generation of electricity and reduce CO2 emissions. 

Note that the efficiency results are not comparable between groups since the group frontiers 

are different.  

 

It is also observed that among the sample plants in the state group, Parli (in 2009) and 

Vijayawada (in 2004 to 2007) thermal power plants are the most inefficient plants; they have 

potential to increase electricity production and reduce carbon emissions by more than 10 

percent. On the other side,  thermal power plants of Chandrapur (in 2006), K-Gundem (in 

2004), Karadi (in 2005 and 2011) and Vijayawada (in 2010 to 2012) are the most efficient 

plants in the state sector; these plants observe less than 0.5 percent inefficiency and may be 

considered as defining the frontier of the state group.16 The average value of DODF for the 

state sector group is 0.032 (Table 3), i.e., the state sector plants have potential to reduce 3.16 

percent CO2 emissions if all of them were operating on its group frontier, which corresponds 

to reduction of 55.36 million tons of CO2 emissions over the study period.17 

 

Meta carbon-sensitive inefficiency is defined as the sum of group-specific inefficiency and 

technology gap (TG). TG, estimated using Equation 21, exhibits the distance between meta-

frontier and group-frontiers. From Table 1 and Figure 1, it can be inferred that TG, at the mean 

level, is slightly higher for the central sector in comparison to the state sector. Moreover, 

dispersion of TG in the central sector is wider than the state sector (Figure 2, panel a). We also 

observe that thermal power plant of Vijayawada is on the group-frontier as well as on the meta-

frontier in 2011.Chandrapur STPS (0.19) in the state group and Neyveli-ST2 (0.17) in the 

central group are farthest away from the meta-frontier (Appendix Table A1).    

 

                                                           
16 Detailed plant level results are presented in Appendix Table A1 and for each of the plant for each of the year 

results can be obtained from the authors on request. 
17 CO2 emission reduction potential of plant, k is calculated as follows: 𝐶𝑂2

𝑘 − 𝐶𝑂2
𝑘(1 − 𝐷𝑂𝐷𝐹𝑘); where 𝐶𝑂2

𝑘 is 

the observed value of CO2 emissions of plant k. 
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Meta-inefficiency results indicate that the plants in the central sector are efficient in comparison 

to the state sector plants (with average inefficiency score of 0.014 and 0.046, respectively) 

(Table 3 and Figure). The distribution of efficiency score for the state sector is more dispersed 

than of the central sector (Figure 2, panel b). Overall, the Indian thermal power sector is about 

96 percent carbon efficient. We also find a correlation coefficient of 0.3 between meta-

inefficiency and auxiliary consumption18, statistically significant at 5% level. The comparison 

of estimates of pooled model with the meta-frontier reveals that for state sector, the estimates 

of meta-inefficiency are higher than the pooled frontier. But in case of central sector, we find 

that inefficiency estimates, obtained using pooled model, are higher than the meta-frontier 

model. 

 

It would be interesting to compare efficiency in the use of coal with the meta-efficiency 

estimates. Efficiency in use of coal or coal productivity is defined as the ratio of coal 

consumption per unit of electricity in a plant to minimum coal consumption per unit of output 

in the sample plants over the study period. Plants revealing higher value of this ratio are 

associated with reduced coal productivity. We find that the average ratio is 11.16 and 11.46 for 

the state and central sectors respectively, implying that state sector is efficient than the central 

sector. Estimates of DODF reflect total factor productivity whereas the coal productivity is an 

indicator of single factor productivity.  

 

Given the meta-inefficiency values, we calculate CO2 emission reduction potential for each 

plant of central and state sectors. We find that the state sector plants could have reduced 79.34 

million tons of CO2 emissions over the study period if they had operated at the meta-frontier 

and the potential reduction of the emissions in the central sector could have been 18.63 million 

tons. That is, if all the plants of central and state sectors had operated on the meta-frontier, the 

Indian thermal power sector could have reduced 98 million tons of CO2 emissions. 

 

 

5.2. Estimates of LPIG and Productivity Growth Gap 

 

Table 4 provides annual average statistics of carbon-sensitive meta-productivity growth, 

represented by LPIM, and its decomposition for both central and state sectors. The results 

suggest an increase in carbon-sensitive meta-productivity growth over the study period 2000 

to 2013. On average, the productivity growth in the sector was about 0.44 percent per annum. 

However, central and state sectors witnessed different productivity growth rates. Carbon-

sensitive productivity growth in the central and state sectors was about 0.6 and 0.4 percent per 

annum, respectively. This reflects that, in general, central sector thermal power plants have 

shown higher carbon-sensitive productivity growth than the state sector plants. 

 

At plant level, on average, we find that 13 central sector plants (about 72 percent of group) and 

26 state sector plants (about 68 percent of group) observed an increase in LPIM (Appendix 

Table A1). In central sector only one plant (Tanda) shows negative growth of productivity and 

but in the state sector about 32 percent of the plants observe negative productivity growth. 

Neyveli19 ST2 thermal power plant shows the highest LPIM (average growth rate about 1.5 

percent), but the thermal plant of Vijayawada (in the state sector) shows the highest carbon-

sensitive productivity growth rate among both the groups. This plant shows a productivity 

growth rate of 3 percent per annum. Akrimota, Bhusawal and Rajghat (all in state sector) show 
                                                           
18 Auxiliary Consumption is defined as the difference between gross and net generation of electricity and is a 

measure of inefficiency. 
19 Neyveli and Akrimota are lignite-based thermal power stations. 
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the lowest figure of LPIM equal to -0.004, indicating that these plants have a negative 

productivity growth rate of about 0.4 percent per year. 

 

We find a small presence of catch-up effect, which is driven by central sector plants. 12 plants 

in central sector and 13 plants in state sector show improvement in the technical efficiency. In 

the thermal power plant of Vijayawada, on average, about 60 percent of the productivity growth 

is attributed to efficiency improvement. It is also observed that overall carbon-sensitive meta-

productivity growth is governed by innovation effect. In central sector, on average, about 80 

percent of the productivity growth is due to technical progress. 14 plants in Central Sector and 

25 plants in state sector exhibit outward shift of production frontier. Chandrapur STPS in state 

sector and Neyveli ST2 in central sector reveal highest technical progress of 1.9 and 1.2 percent 

per year, respectively. 

 

We find that group-specific carbon-sensitive productivity growth rate of the state sector is 

higher than the central sector and is governed by technical progress. In the central sector, we 

observe a relatively uniform production technology. Moreover, state sector group shows a 

slightly higher carbon-sensitive technical progress than the central sector group. Carbon-

sensitive productivity growth under the meta-froontier model is observed to be higher than the 

pooled-frontier model. Based on pooled-frontier model, it is seen that central sector witnesses 

higher productivity growth than the state sector and is attributed to innovation effect. 

 

The difference between the carbon-sensitive meta-productivity growth and group-specific 

productivity growth is captured by productivity growth gap (PGG) indicator. A positive value 

of PGG indicates shrinking gap between the meta and group-specific productivity measures. 

PGG is further decomposed between ECG and TCG, measuring pure technological catch-up 

(PTCU) and frontier catch-up (FCU) respectively. We observe that the average ECG is 

negative (-0.0005) for the state sector group but it is positive (0.0012) for the central sector 

group, which implies that the PTCU has increased for the state sector group, but the effect has 

decreased for the central sector group (Table 4). The catch-upeffect is positive for both the 

groups implying that the technological innovation gap in group-frontier vis-à-vis meta-frontier 

is dwindling. 

 

Above analysis reveals heterogeneity between state and central sector thermal power plants in 

India. The kernel density plots confirm obvious differences in the distribution pattern of the 

indicators of carbon-sensitive productivity growth (Figure 3). For example, the kernel density 

curves of LPIM of these two groups show that the curve of the central sector is of a steep shape 

while that of the state sector shows a gradual pattern (Figure 3, Panel A). Similarly, differences 

can be observed in the distribution patterns of TPM, EFFCM, PGG and their components, viz., 

ECG and TCG. 

 

It would be interesting to compare the dynamic trends in indicators of carbon-sensitive 

productivity growth among the two groups. Figures 4 to 6 depict dynamic changes in 

cumulative LPIM and its two components, EFFCM and TPM. We consider the year 2000 as the 

base year, with the indicator values equal to zero. Figure 4 displays an increasing trend in 

carbon-sensitive productivity growth for both groups; it is higher for the central sector than the 

state sector and the gap in carbon-sensitive productivity growth between the two groups is 

increasing over time. We also observe almost concave shape of the productivity growth curves 

reflecting that in the beginning the productivity is increasing at an increasing rate and after 

2004 it is increasing at a decreasing rate. In the state sector group, the growth rate of carbon-

sensitive productivity has almost stagnated after 2008, with little fluctuations.                   
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Figure 5 explains cumulative carbon-sensitive meta-efficiency improvement for the two 

groups. It reflects that efficiency improvements are almost missing in state sector plants. The 

trend was slightly positive only for the period of 2004 to 2007 in state sector, while for central 

sector group, it is increasing during 2001 to 2007, then observe a declining trend (2007 to 2010) 

and has stagnated subsequently. Combining the results of Figures 4 to 6, we infer that carbon-

sensitive innovations govern the productivity growth in Indian thermal power sector. We find 

that both the groups observe an increasing trend in carbon-sensitive innovations, but the growth 

rate of innovations in central sector is higher than the state sector (Figure 6). 

 

Figure 7 plots the trends in the components of productivity growth gap (PGG), i.e., technical 

change gap (TCG) and efficiency change gap (ECG). Central sector group shows a continuous 

upward trend in TCG and an upward trend in ECG till 2007 and stagnation thereafter, with 

some fluctuations. However, the state sector observes an ‘inverted U’ shape of TCG, increasing 

till 2010 and then shows a declining trend. This shows that the technological gaps of state sector 

thermal power plants increased after 2010, though before that the gaps were declining. The 

above analysis reveals the heterogeneity observed in carbon-sensitive productivity growth 

between central sector and state sector thermal power plants in India. 

 

To examine the determinants of carbon-sensitive meta-productivity growth and its 

components, we regress meta-carbon-sensitive productivity growth on the lagged value of 

inefficiency, average size of production unit in a thermal power station, CO2 intensity of 

electricity generation, ownership dummy (equal to one if owned by the central government, 

and equal to 0 if owned by a state government), and a dummy to capture plant specific time-

invariant characteristics. Inclusion of lagged technical inefficiency as a determinant of 

productivity growth helps in restating the convergence theory, i.e., plants away from the 

production frontier would see higher level of productivity growth than those were nearer the 

frontier (Lall et al., 2002, Kumar, 2006). Similarly, a positive relationship between productivity 

growth and ownership dummy establishes the fact that autonomy in operations of thermal 

power plants helps in achieving higher carbon-sensitive growth. We also regress carbon-

sensitive innovations, productivity growth gap and technical change gap on the above stated 

variables. 

 

Table 5 displays the regression results. From the regression results it is evident that plants away 

from the frontier observe higher productivity growth, since the coefficient of lagged 

inefficiency is positive and statistically significant. Similarly, we observe a positive 

relationship between the lagged technology gap and productivity growth gap. It shows a 

convergence behaviour in carbon-sensitive productivity growth in coal-based electricity sector 

in India. We discern a negative relationship between the productivity indicators and average 

size of production unit. It is also found that the carbon-sensitive productivity growth and 

carbon-sensitive innovations are negatively associated with CO2 intensity of electricity 

generation in the country. We also detect a negative relationship between productivity growth 

gap/technical change gap and carbon intensity.              

 

The sign of dummy variable of ownership is of particular interest. The central sector owned 

plants are managed by a public sector enterprise namely, NTPC which runs the business of 

electricity generation almost on commercial terms. On the other hand, electricity generation 

business in the plants owned by the various state governments is more or less in the hands of 

bureaucrats and politicians. This positive relationship discerned between carbon-sensitive 

productivity growth or its components and the ownership dummy indicates that 
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commercialization of or autonomy in electricity generation is beneficial both from energy and 

environment perspectives. 

 

 

6. Conclusion 

 

We measure carbon-sensitive meta- efficiency and productivity of the Indian thermal power 

industry exploiting a unique data set for 56 thermal power plants over the period of 2000 to 

2013, obtained invoking the Right to Information Act. We estimate meta-directional output 

distance function involving stochastic frontier analysis in both the steps; estimation of meta-

frontier requires two-step procedure. The advantage of meta-frontier analysis is that it 

recognises group heterogeneity. We estimate the meta-stochastic frontier using recently 

developed ‘within’ maximum likelihood estimator approach to distinguish between plant 

heterogeneity and productivity. 

We group thermal power plants into two groups: state sector plants and central sector plants. 

We find that the state sector plants have higher potential to increase electricity generation and 

reduce carbon emission than the central sector plants. The potential in the state sector plants is 

the combination of both group-specific inefficiency and technology gap, but in the central 

sector the potential exists because of technology gap only. If all the state and central sectors 

plants were made to operate on the meta-frontier, they could have reduced the CO2 emissions 

of about 98 million tons during the period of 2000 to 2013. Moreover, it is found that the 

carbon-sensitive productivity growth in central sector is higher than the state sector, though in 

both the sectors the productivity growth is governed by the carbon-sensitive innovation effect. 

This finding is consistent with the fact that state governments owned thermal power plants are 

older than the plants owned by the central government. Observed concave shape of productivity 

growth curve is an issue of concern, making further growth in carbon-sensitive productivity 

difficult, which has already stagnated in state sector. The regression results highlight the fact 

that commercialisation or autonomy in electricity generation induces carbon-sensitive 

productivity growth and reduces carbon-sensitive productivity growth gap.  

 

This study has some limitations. First, it covers only the period 2000 to 2013 and it is confined 

to public sector owned plants. Data is not available at unit level. Future studies should consider 

unit-level data for a longer period and also involve private sector owned plants in the analysis. 

Second, we recognise the importance of ownership of different plants in state sector and central 

sector; it would be interesting for the future studies to divide the groups based on various 

criteria, such as fuel type, location, technology etc. Thirdly, future studies may also take into 

consideration other air and water pollutants produced by the sector. Nevertheless, the study is 

able to highlight the technological heterogeneity in carbon-sensitive productivity growth 

experienced in the thermal power sector by central and state sector plants. The findings of the 

study underline the importance of modernization and autonomy/commercialization of the 

sector to harness the potential of carbon-sensitive productivity growth.  
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Table 1: Descriptive Statistics of the Variables  

    Overall  Central Sector State Sector 

Variable Unit Obs Mean Std. Dev. Obs Mean Std. Dev. Obs Mean Std. Dev. 

Electricity (net 

generation) GWH 458 5830.81 4973.92 127 9808.59 6351.92 331 4304.60 3229.57 

CO2 Emissions Tonnes (1000) 458 6421.04 4776.88 127 10200 5785.55 331 4955.8 3324.74 

Labour Cost INR  (millions) 458 441.5 281.6 127 667.6 308.7 331 354.8 214.9 

Capital GWH 458 6595.37 5080.49 127 10483.71 6257.20 331 5103.47 3569.96 

Coal Tonnes (1000) 458 4806.61 3850.7 127 8102.44 4575.26 331 3542.05 2599.5 

Average Unit Size MW 458 192.25 109.95 127 274.57 140.56 331 160.66 74.76 

Plant Size MW 458 959.96 682.17 127 1456.73 843.93 331 769.35 491.02 

CO2 intensity kg/kWH 458 1.23 0.26 127 1.13 0.25 331 1.27 0.25 

Vintage Year 458 24.62 10.31 127 22.05 11.32 331 25.60 9.73 

Auxiliary Consumption Percent 458 9.95 2.51 127 8.26 1.98 331 10.60 2.38 

 

 

Table 2: Parameter Estimates of the Stochastic Directional Distance Frontier 

Model 

Pooled Stochastic 

Frontier (Version 1) 

State Group 

Frontier (Version 2) 

Central Group 

Frontier (Version 3) 

Meta Stochastic 

Frontier (Version 4) 

Variable Coef. z-stat. Coef. z-stat. Coef. z-stat. Coef. z-stat. 

Electricity -0.620*** -19.59 -0.640*** -11.17 

-

0.6347*** -13.79 

-

0.629*** -49.13 

CO2 0.380  - 0.360  - 0.365  - 0.371  - 

Electricity2, CO2
2, 

ElectricityCO2 -0.136*** -3.85 -0.079* -1.7 

-

0.1449*** -2.88 

-

0.113*** -7.93 

ElectricityLabour, 

CO2Labour -0.052*** -2.72 -0.125*** -4.06 -0.0046 -0.22 

-

0.073*** -9.51 

ElectricityCapital, 

CO2Capital 0.277*** 5.57 0.261*** 3.56 0.2613*** 3.9 0.270*** 11.81 

ElectricityCoal, CO2Coal 0.053 1.48 0.027 0.58 0.0664 1.05 0.040*** 3.65 
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ElectricityTime, CO2Time 0.006** 2.23 0.008 1.37 0.0040 1.16 0.005*** 4.61 

Labour 0.023 1.11 -0.004 -0.12 0.0892*** 2.83 0.002 0.26 

Capital 0.089* 1.8 0.003 0.04 0.1515** 2.4 0.080*** 3.92 

Coal 0.165*** 3.04 0.239** 2.35 0.1628* 1.84 0.204*** 9.26 

Time -0.005*** -2.62 -0.003 -1.21 -0.0044 -0.82 

-

0.006*** -6.2 

Time2 0.001** 2.42 0.001* 1.9 0.0004 0.65 0.001*** 5.78 

Labour2 -0.036** -2.12 0.014 0.39 -0.0508** -2.5 -0.003 -0.38 

LabourCapital 0.140*** 4.12 0.310*** 4.76 0.0663* 1.76 0.163*** 13.03 

LabourCoal 0.027 1.16 -0.004 -0.1 -0.0102 -0.37 0.022** 2.39 

LabourTime -0.001 -1.01 -0.002 -1.41 -0.0039* -1.68 0.000 -0.96 

Capital2 -0.449*** -5.26 -0.629*** -4.52 

-

0.4591*** -4.08 

-

0.463*** -12.92 

CapitalCoal -0.175*** -2.75 -0.150* -1.64 -0.1093 -1.37 

-

0.163*** -6.95 

CapitalTime -0.006 -1.29 0.003 0.33 -0.0046 -0.74 -0.004* -1.96 

Coal2 -0.006 -0.1 0.147* 1.61 -0.1021 -0.99 -0.003 -0.12 

CoalTime -0.007** -2.23 -0.022*** -3.13 -0.0006 -0.17 

-

0.008*** -5.65 

Sigma2 (𝜎2 = 𝜎𝑢
2 + 𝜎𝑣

2) 0.002*** 8.63 0.002*** 6.93 0.0004*** 7.31 0.000*** 5.17 

Lambda (𝜆 =
𝜎𝑢
2

(𝜎𝑢2 + 𝜎𝑣2)
⁄ ) 

-3.458*** -3.83 -3.498*** -2.94 -0.0035 0 3.611* 1.81 

Log likelihood 618.343   469.925   195.4880   979.772   

Number of Observations 458   331   127   458   

Note: ***: significant at 1% level; **: significant at 5% level; *: significant at 10% level
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Table 3: Carbon-sensitive Inefficiency at the Group Level 

 Group   INEFF INEFFG TG INEFFM 

State Mean 0.0342 0.0323 0.0137 0.0460 

  S. D 0.0200 0.0183 0.0077 0.0200 

Central Mean 0.0332 0.0000 0.0141 0.0142 

  S. D 0.0171 0.0000 0.0106 0.0106 

Total Mean 0.0339 0.0233 0.0138 0.0372 

  S. D 0.0192 0.0212 0.0086 0.0229 
Note: INEFF: Inefficiency estimates based on pooled model; INEFFG: Inefficiency estimates based on group 

specific model; TG: Estimates of Technology Gap; INEFFM: Estimates of Meta-Inefficiency. Mean: Arithmatic 

Average; S.D.: Standard Deviation. 

 

Table 4: Carbon-sensitive Productivity Growth and its Decomposition at the Group Level 

  State Centre Total 

  Mean S.D. Mean S.D. Mean S.D. 

LPIM 0.0039 0.0215 0.006 0.012 0.0044 0.0197 

EFFCM -0.0001 0.0206 0.0012 0.0111 0.0002 0.0187 

TPM 0.0041 0.0067 0.0048 0.0042 0.0043 0.0062 

LPIG 0.0029 0.0188 0.0022 0.0025 0.0027 0.0164 

EFFCG 0.0003 0.0182 0 0 0.0003 0.0159 

TPG 0.0025 0.0046 0.0022 0.0025 0.0025 0.0042 

PGG 0.0011 0.0091 0.0038 0.012 0.0017 0.0099 

ECG -0.0005 0.0088 0.0012 0.0111 -0.0001 0.0094 

TCG 0.0015 0.0023 0.0026 0.003 0.0018 0.0026 

LPI 0.0014 0.0204 0.0023 0.0192 0.0016 0.0201 

EFFC 0 0.0203 0.0005 0.0187 0.0001 0.0199 

TP 0.0014 0.0022 0.0018 0.0028 0.0015 0.0023 

Note: EFFC: Efficiency change based on pooled model; EFFCG: Efficiency change based on group specific model; 

ECG: Technology change gap; EFFCM: Meta-efficiency change gap; TP: Technical progress based on pooled 

model; TPG: Technical progress based on group specific model; TCG: technical change gap; TPM: Meta technical 

progress; LPI: Luenberger productivity indicator based on pooled model; LPIG: Luenberger productivity indicator 

based on group specific model; PGG: productivity growth gap; LPIM: Meta Luenberger productivity indicator; 

Mean: Arithmetic Mean; S. D.: Standard Deviation 
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Table 5: Determinants of Meta Carbon-sensitive Productivity Growth 

  LPIM TPM PGG TCG 

  Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. 

INEFFM
t-1 0.672*** 14.50 -0.0025 -0.24         

TG t-1         0.656*** 11.95 0.004 0.41 

Ln(Average 

unit size)  -0.033*** 4.99 -0.007*** -4.46 -0.011*** -3.00 -0.004*** 5.97 

CO2 intensity 

kg/kwh -0.098*** -10.69 -0.005** -2.42 -0.012** -2.40 -0.002** -2.08 

Sector dummy 

(Central=1) 0.032** 2.26 0.014*** 4.40 0.019** 2.43 0.013*** 8.73 

Constant 0.266*** 4.01 0.045*** 5.20 0.064*** 3.05 0.025*** 6.38 

Plant dummy Yes Yes Yes Yes 

 F(57,320) 5.96*** 15.62*** 3.71*** 11.69*** 

R2 0.52 0.74 0.40 0.68 

Obs 378 378 378 378 
Note: LPIM: Meta Luenberger productivity indicator; TPM: Meta technical progress; PGG: productivity growth 

gap; TCG: technical change gap; TG: Estimates of Technology Gap; INEFFM: Estimates of Meta-Inefficiency.  

***: significant at 1% level 

**: significant at 5% level 

*: significant at 10% level 
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Figure 1: Various Estimates of Carbon-sensitive Inefficiency Measures 

 
Note: 0: State Group, 1: Central Group; ineff: inefficiency based on pooled model; ineffgroup: inefficiency based 

on group specific model; ineffgap: technology gap; ineffmeta: meta-inefficiency 

 

Figure 2: Kernel Density Estimates of Carbon-sensitive Inefficiency for State and Central 

Group 

a

 

b

 
Note: Ineffgap: technology gap; INEFmeta: meta inefficiency 
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Figure 3: Kernel Density Estimates of Carbon-sensitive Productivity Growth for State and 

Central Group 

a

 

b

 
c

 

d

 

e

 

f

 
Note: PCmeta: Meta Luenberger Productivity Indicator; TPmeta: meta technical progress; INECmeta: meta 

efficiency change; TPgap: technical progress (change) gap; INEFFCgap: Efficiency change gap; PCgap: 

Productivity growth gap. 
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Figure 4: Trends in Cumulative Meta Carbon-sensitive Productivity Growth 

 
 

Figure 5: Trends in Cumulative Meta Carbon-sensitive Efficiency Improvement 
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Figure 6: Trends in Cumulative Meta Carbon-sensitive Technical Progress 

 
 

 

Figure 7: Trends in Cumulative Carbon-sensitive Efficiency Change Gap and Technical 

Change Gap 
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Appendix 

 

Table A1: Carbon-sensitive Inefficiency and Decomposition of Productivity Growth at the Plant Level 
Plant name INEFF INEFFG TG INEFFM EFFC EFFCG ECG EFFCM TP TPG TCG TPM LPI LPIG PGG LPIM 

Badarpur 0.032 0 0.013 0.013 . . . . . . . . . . . . 

Chandrapura (DVC) 0.033 0 0.013 0.013 0.003 0 0.001 0.001 0.002 0.005 0.001 0.006 0.006 0.005 0.002 0.007 

DADRI (NCTPP) 0.033 0 0.013 0.013 -0.011 0 -0.001 -0.001 -0.001 0.002 0 0.002 -0.012 0.002 -0.002 0 

Farakka STPS 0.032 0 0.016 0.016 -0.001 0 -0.005 -0.005 0.003 0.006 0.003 0.009 0.002 0.006 -0.002 0.004 

Kahalgaon STPS 0.034 0 0.014 0.014 0.006 0 0.005 0.005 0.006 0.004 0.006 0.009 0.011 0.004 0.011 0.015 

Korba STPS 0.039 0 0.015 0.015 -0.007 0 -0.004 -0.004 0.001 0.002 0.003 0.005 -0.005 0.002 -0.001 0.001 

Neyveli FST EXT 0.032 0 0.013 0.013 0 0 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.003 0.004 

Neyveli ST1 0.032 0 0.014 0.014 0.002 0 0.003 0.003 0.003 0.003 0.004 0.006 0.005 0.003 0.007 0.01 

Neyveli ST2  0.034 0 0.017 0.017 0.002 0 0.003 0.003 0.006 0.004 0.008 0.012 0.008 0.004 0.011 0.015 

R-Gundem STPS 0.034 0 0.013 0.013 0.002 0 0.001 0.001 -0.002 0 0 0 -0.001 0 0.001 0.001 

Rihand STPS 0.032 0 0.013 0.013 0.002 0 0.001 0.001 -0.001 -0.001 0 -0.001 0.001 -0.001 0.002 0 

SIMHADRI 0.032 0 0.014 0.014 -0.001 0 0.004 0.004 0 0 0.001 0.001 -0.001 0 0.004 0.005 

Singrauli STPS 0.033 0 0.014 0.014 0.005 0 0.002 0.002 0.001 0.002 0.002 0.004 0.005 0.002 0.004 0.006 

Sipat STPS 0.035 0 0.013 0.013 0.008 0 0.003 0.003 0 0.001 0 0.002 0.008 0.001 0.004 0.005 

Talcher STPS 0.033 0 0.016 0.016 0.001 0 0.009 0.009 0.004 -0.003 0.007 0.005 0.006 -0.003 0.016 0.013 

Tanda 0.032 0 0.013 0.013 -0.001 0 -0.003 -0.003 0 0.003 0 0.002 -0.002 0.003 -0.004 -0.001 

Unchahar 0.032 0 0.014 0.014 -0.006 0 -0.003 -0.003 0 0.003 0 0.003 -0.006 0.003 -0.003 0 

Vindhyachal STPS 0.037 0 0.015 0.015 -0.002 0 0.004 0.004 0 -0.003 0.003 0 -0.002 -0.003 0.007 0.004 

Akrimota Lignite 0.032 0.03 0.013 0.043 -0.001 -0.002 0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.002 -0.004 0 -0.004 

Amarkantak 0.032 0.031 0.013 0.044 -0.002 -0.002 0 -0.002 0.001 -0.001 0.001 0.001 -0.001 -0.003 0.001 -0.002 

Bandel 0.032 0.031 0.013 0.044 -0.006 -0.007 0 -0.007 -0.001 -0.002 -0.001 -0.003 -0.007 -0.008 -0.001 -0.01 

Bhatinda 0.033 0.03 0.013 0.043 0.004 0.003 0 0.003 0.002 0.002 0.002 0.004 0.006 0.005 0.002 0.007 

Bhusawal 0.033 0.031 0.013 0.045 -0.006 -0.008 -0.001 -0.009 0.002 0.003 0.002 0.005 -0.003 -0.005 0.001 -0.004 

Chandarpur STPS 0.04 0.035 0.019 0.054 -0.006 0.002 -0.005 -0.002 0.005 0.014 0.006 0.019 -0.001 0.016 0.001 0.017 

DPL 0.033 0.031 0.013 0.044 0.001 0.001 0 0.001 0 0 0 0 0.002 0.001 0 0.001 

Durgapur 0.032 0.03 0.013 0.043 0.003 0.003 -0.002 0.001 0 0 0 -0.001 0.003 0.003 -0.002 0.001 

Ennore 0.032 0.03 0.013 0.043 0 0 0 0 0.003 0.002 0.002 0.004 0.002 0.002 0.002 0.004 

Faridabad 0.032 0.03 0.013 0.043 0.004 0.002 0.002 0.004 0.002 0.001 0.002 0.003 0.006 0.003 0.004 0.007 

Gandhinagar 0.033 0.031 0.013 0.044 0.007 0.004 0.002 0.006 0.001 0 0.001 0.001 0.008 0.004 0.003 0.007 

I B Valley 0.032 0.03 0.013 0.043 -0.001 0.001 -0.002 -0.001 -0.001 0.001 -0.001 0 -0.002 0.002 -0.003 -0.001 

K-Kheda II 0.033 0.03 0.014 0.044 -0.003 0.001 -0.003 -0.002 0.002 0.004 0.002 0.006 -0.001 0.005 -0.001 0.004 

K_gudem 0.034 0.035 0.016 0.051 -0.009 -0.011 0.002 -0.009 0.004 0.01 0.004 0.014 -0.005 -0.001 0.006 0.005 
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Koradi 0.04 0.037 0.014 0.05 0.001 0 0.003 0.003 0.003 0.005 0.003 0.008 0.004 0.005 0.005 0.011 

Korba-East 0.033 0.032 0.013 0.045 0.002 0.001 -0.001 0 0.003 0.006 0.003 0.009 0.005 0.008 0.002 0.009 

Korba-west 0.033 0.032 0.013 0.045 0.001 0.003 -0.002 0.001 0.002 0.005 0.002 0.006 0.003 0.008 0 0.007 

Kota 0.033 0.031 0.013 0.045 0 0 0 0 0.001 0.003 0.002 0.005 0.001 0.003 0.002 0.005 

Kutch Lignite 0.032 0.03 0.013 0.044 -0.002 0 -0.002 -0.002 0 0.001 0 0.001 -0.002 0.002 -0.002 -0.001 

Nasik 0.037 0.037 0.013 0.05 -0.001 -0.002 0.001 -0.001 0.002 0.003 0.002 0.006 0.001 0.001 0.003 0.004 

Panipat 0.034 0.033 0.013 0.046 -0.001 0 -0.001 -0.001 0.001 0.005 0.002 0.007 0.001 0.005 0.001 0.006 

Paras 0.032 0.031 0.014 0.045 0 0.003 -0.003 0 0.001 -0.001 0 0 0.001 0.002 -0.003 -0.001 

Paricha 0.032 0.03 0.013 0.043 0.007 0.004 0.003 0.007 0.002 0.001 0.002 0.003 0.01 0.005 0.005 0.01 

Parli 0.036 0.034 0.013 0.047 -0.001 -0.002 0 -0.001 0.002 0.002 0.002 0.004 0.001 0.001 0.002 0.002 

R_GUNDEM - B 0.032 0.03 0.013 0.043 0 -0.001 0.001 0 0.001 -0.001 0 -0.001 0.001 -0.002 0.001 -0.001 

Rajghat 0.032 0.03 0.013 0.043 -0.002 -0.002 0 -0.002 0 -0.002 -0.001 -0.002 -0.002 -0.004 -0.001 -0.004 

Rajiv Gandhi Hisar 0.032 0.03 0.013 0.043 0.013 0.01 0.005 0.015 -0.002 -0.001 -0.002 -0.002 0.011 0.01 0.003 0.013 

Rayalseema 0.032 0.031 0.014 0.045 0.001 0.004 -0.002 0.001 0.001 0.002 0.001 0.003 0.002 0.006 -0.001 0.004 

Sagardighi TPP 0.032 0.03 0.013 0.043 -0.001 0.001 -0.002 -0.002 -0.001 -0.001 -0.001 -0.002 -0.002 0 -0.003 -0.003 

Satpura 0.037 0.032 0.015 0.047 -0.006 -0.003 -0.004 -0.007 0.004 0.009 0.004 0.014 -0.002 0.006 0.001 0.007 

Sikka REPL 0.032 0.03 0.013 0.043 0 -0.002 0.001 0 0 -0.001 0 -0.002 0 -0.003 0.001 -0.002 

Suratgarh 0.032 0.031 0.014 0.045 0 0.001 -0.001 0 0 0.002 0.002 0.003 0.001 0.003 0 0.003 

Talcher 0.032 0 0.013 0.013 0.002 0 -0.004 -0.004 0 0.005 0 0.005 0.002 0.005 -0.004 0.001 

Tenughat 0.032 0.03 0.013 0.043 0.003 0.004 0 0.003 0 -0.001 0 -0.001 0.003 0.002 -0.001 0.002 

Tutikorin 0.032 0.03 0.014 0.044 -0.005 -0.001 -0.003 -0.004 0.001 0.005 0.002 0.007 -0.004 0.004 -0.001 0.003 

Ukai 0.032 0.03 0.013 0.043 -0.001 -0.001 -0.001 -0.001 0.002 0.002 0.002 0.004 0 0.002 0.001 0.003 

Vijaywada 0.07 0.061 0.017 0.078 0.016 0.016 0.001 0.018 0.003 0.009 0.003 0.012 0.019 0.025 0.005 0.03 

Wanakbori 0.033 0.03 0.015 0.046 0.006 0.002 0.005 0.006 -0.004 -0.009 -0.003 -0.012 0.002 -0.007 0.001 -0.006 

Central 0.0332 0.0000 0.0141 0.0142 0.0005 0.0000 0.0012 0.0012 0.0018 0.0022 0.0026 0.0048 0.0023 0.0022 0.0038 0.0060 

State 0.0342 0.0323 0.0137 0.0460 0.0000 0.0003 -0.0005 -0.0001 0.0014 0.0025 0.0015 0.0041 0.0014 0.0029 0.0011 0.0039 

Total 0.0339 0.0233 0.0138 0.0372 0.0001 0.0003 -0.0001 0.0002 0.0015 0.0025 0.0018 0.0043 0.0016 0.0027 0.0017 0.0044 

Note: INEFF: Inefficiency estimates based on pooled model; INEFFG: Inefficiency estimates based on group specific model; TG: Estimates of Technology Gap; INEFFM: 

Estimates of Meta-Inefficiency; EFFC: Efficiency change based on pooled model; EFFCG: Efficiency change based on group specific model; ECG: Technology change gap; 

EFFCM: Meta-efficiency change gap; TP: Technical progress based on pooled model; TPG: Technical progress based on group specific model; TCG: technical change gap; 

TPM: Meta technical progress; LPI: Luenberger productivity indicator based on pooled model; LPIG: Luenberger productivity indicator based on group specific model; PGG: 

productivity growth gap; LPIM: Meta Luenberger productivity indicator. 

 

 




