
ISSN No. 2454 - 1427 
 

CDE 
February 2021 

 
 
 

 

         Equilibria under Liability Rules: How 
                  the standard claims fall apart 

 

 
 Allan M Feldman  
                    Email: allan_feldman@brown.edu  
                           Department of Economics, 

Brown University 
 
 

 
 

      Ram Singh 
 E-mail: ramsingh@econdse.org 

      Department of Economics, 
     Delhi School of Economics 

 
 
 
 
 
 

   Working Paper No. 315 

 

 
       http://www.cdedse.org/pdf/work315.pdf   

 

 
 

Centre for Development Economics 
Delhi School of Economic 

                 Delhi -110007 

http://www.cdedse.org/pdf/work315.pdf


EQUILIBRIA UNDER LIABILITY RULES:

HOW THE STANDARD CLAIMS FALL APART

ALLAN FELDMAN† AND RAM SINGH‡

Abstract. In many accident contexts, the accident harm depends on observable as well

as unobservable dimensions of the precaution exercised by the parties involved. The ob-

servable dimensions are commonly referred to as the ‘care’ levels and the unobservable

aspects as the ‘activity’ levels. In a seminal contribution, Shavell (1980) extended the

scope of economic analysis of liability rules by providing a model that allows for the care

as well as activity level choices. Subsequent works have used and extended Shavell’s model

to predict outcomes under various liability rules and also to compare their efficiency prop-

erties. These works make several claims about the existence and efficiency of equilibria

under different liability rules, without providing any formal proof. In this paper, we re-

examine the prevalent claims in the literature using the standard model itself. Contrary

to prevalent claims, we show that the standard negligence liability rules do not induce

equilibrium for all the accident contexts admissible under the model. Under the standard

model, even the ‘no-fault’ rules can fail to induce a Nash equilibrium. In the absence of an

equilibrium, it is not plausible to make a claim about efficiency of a rule per-se or vis-a-vis

other rules.

We show that even with commonly used utility functions that meet all the requirements

of the standard model, the social welfare function may not have a maximum. In many

other situations fully compatible with the standard models, a maximum of the social

welfare function is not discoverable by the first order conditions. Under the standard

models, even individually optimum choices might not exist. We analyze the underlying

problems with the standard models and offer some insights for future research on this

subject.

Keywords. Observable and Non-observable Care, Activity Levels, Negligence Liability,

No-fault Liability, Second Best, Nash equilibrium, Accident Loss, First Best
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1. Introduction

In many accident contexts, the accident loss and the probability of an accident depend on

observable as well as unobservable dimensions of the care exercised by the parties involved.

In the literature on liability rules, the observable dimensions are commonly called the ‘care’

levels and the unobservable aspects of care are referred to as the ‘activity’ levels. In a

pioneering contribution, Shavell (1980) extended the scope of economic analysis of liability

rules by providing a model that allows choices of care and activity levels by the parties

involved. Shavell’s framework provides conditions relevant for the individual utility/ benefit

functions and the accident loss function. It has served as a standard model for much of the

subsequent works, including Shavell (1987), Endres (1989), Miceli (1997 p. 29), Cooter and

Ulen (2004, pp. 332-33), Dari-Mattiacci (2002), Delhaye (2002), Goerke (2002), Parisi and

Fon (2004), Singh (2006), Singh (2009), Parisi and Singh (2010), Dari-Mattiacci, Lovat and

Parisi (2014), Guerra (2015), Carbonara, Guerra and Parisi (2016), Miceli (2017, Ch 2)

among others.1

For the most part, existing literature on the subject has focused on examining properties

of equilibrium outcomes under the standard rules - the rules of strict liability, no-liability,

and the negligence liability based rules; namely, the rule of simple negligence, the rule of

negligence with a defense of contributory negligence, the rule of negligence with a defense of

comparative negligence, and the rule of strict liability with a defense of contributory negli-

gence. In important contributions, Dari-Mattiacci, Lovat and Parisi (2014) and Carbonara,

Guerra and Parisi (2016) have extended the analysis beyond the standard rules to examine

the efficiency of rules that permit sharing of liability between non-negligent parties.

Literature Re-examined. In this paper, we re-examine some of the existing claims

about the equilibrium outcomes under liability rules and their efficiency properties. As to

the existence of equilibria, the standard literature based on the standard model and its

generalizations has made the following claims.2

First, under the rule of negligence (with or without defense of contributory negligence),

the injurer’s activity level will be excessive, i.e., greater than the socially optimum level of his

activity. However, the victim will make efficient choices, given the inefficient activity choice

by the injurer. Analogously, under the rule of strict liability with defense of contributory

negligence, the victim’s activity level will be inefficiently high, but the injurer’s choices will

be efficient.

Second, equilibria exist under the negligence liability rules. This claim also follows from

the first claim - otherwise, it will be pointless to talk about the outcome under liability

rules. Some works have argued that the negligence criterion based liability rules induce

1For works dealing with the doctrinal foundations of liability and models with constant activity levels, see

Polinsky (1980), Landes and Posner (1987), Miceli (1997), Hylton (2001), Jain and Singh (2002), Schfer and

Frank (2009), Feldman and Singh (2009), Cooter and Ulen (2004), BarGil and Ben Shahar (2003), Singh

(2003, 2007). Also see, e.g., Emons (1990). For applications of the model in other contexts, see Singh (2004

and 2009).
2See Shavell (1980), Shavell (1987), Endres (1989), Miceli (1997 p. 29), Cooter and Ulen (2004, pp. 332-

33), Dari-Mattiacci (2002), Delhaye (2002), Goerke (2002), Parisi and Fon (2004), Singh (2006), Parisi and

Singh (2010). For a discussion, see Dari-Mattiacci, Lovat and Parisi (2014, page 572), Carbonara, Guerra

and Parisi (2016), and Miceli (2017, Ch 2).
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equilibria in which the injurer and the victim opt for care levels that are appropriate from

the view point of first-best efficiency.3

We re-examine these claims by using commonly used utility and accident loss functions

that satisfy all the conditions in the standard model. We strictly follow all the procedures

prescribed in the standard model, including the procedure for setting of due care standards

for both parties, etc. Yet, contrary to the common belief, we show that depending on

the accident context and the liability rule used, a Nash equilibrium may or may not exist.

In other words, the existence of a Nash equilibrium under negligence based liability rules

cannot be taken for granted. We show that even the rule of strict liability and the rule of

no-liability for the injurer fail to induce equilibrium under the standard models.

As far as the efficiency analysis is concerned, liability rules can be compared with one

another by comparing the Nash equilibria induced by the rules under consideration.4 The

above cited literature has focused on efficiency properties of the negligence based liability

rules, implicitly assuming that these rules are more efficient than the rules of strict liability

and the rule of no-liability. In contrast, we will show that for standard negligence based

rules it is not plausible to make a general claim about their efficiency properties, since under

these rules existence an equilibrium itself cannot be taken for granted. For the same reason

any claim about the relative efficiency of a negligence based liability rules vis-a-vis any other

rule including the rule of strict liability can be shaky. Moreover, we show that even in the

context were a negligence based rule induces a Nash equilibrium, it may be dominated by

the rule of strict liability or the rule of no-liability.

To investigate the above issues further, we examine the nature of the individual payoff

functions and the social welfare function under the standard models. We show that the

standard models have inherent problems. For several commonly used specifications of these

models, even for individuals the optimum choices may not exit.

What is even more serious, the social welfare function in the standard model does not

possess properties assumed in the literature. For many accident contexts and commonly

used utility functions that meet all the standard conditions, the social welfare function

does not have a maximum, in which case the negligence standards would not be defined,

let alone a Nash equilibrium of the games induced by the negligence based rules. In many

other cases fully compatible with the standard models, the first best (the maximum of social

welfare function) may exist but may not be interior. A corner maximum is not a problem

per-se. What is problematic is the analytical framework induced by the standard model is

inherently prone to generating corner maxima. Simply put, the standard models are not

appropriate for risky situation that require significant and comparable activity levels from

both parties; such as, motor vehicle accidents.

The Related Literature. Two of the relatively recent works are especially relevant for

our study. These are the significant contribution by Dari-Mattiacci, Lovat, and Parisi

(2014) and a follow up study by Carbonara, Guerra and Parisi (2016). These works have

shown that in some accident settings, the sharing of liability between non-negligent parties

3See Miceli (1997 p. 29), Cooter and Ulen (2004, pp. 332-33), and research papers Dari Mattiacci (2002),

Parisi and Fon (2004), also see Delhaye (2002) and Miceli (2017, Ch 2). For an exhaustive review of the

literature on this and related issues, see Guerra (2015).
4In particular, rule A is more efficient to rule B if the Nash equilibrium under rule A implies higher social

welfare level than the Nash equilibrium under rule B.
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does not dilute incentives for parties to take due care. Moreover, splitting of the accident

loss between non-negligent parties enhances the efficiency of negligence liability rules under

certain conditions. These results have been derived for particular accident contexts where

the activity choice of one party does not depend on care choice by the other party.

We show that in several accident settings under the standard model, the rule of strict

liability and/ or the rule of no-liability can be more efficient than a liability sharing rule.

However, our findings do not contradict the ones in Dari-Mattiacci et al. (2014), as the

accident contexts studied are different.

Some other works have suggested that the efficiency of the rules of negligence can be

improved by raising the due care standard for injurers. See Goerke (2002) and Shavell

(2007).5 These works also implicitly assume that the negligence based rules induce and

continue to induce a Nash equilibrium, even when the due care standard are changed. Our

analysis shows that for a negligence based rule existence of an equilibrium can also depend

on the due care levels.

Section 2 summarizes the standard models used in existing literature including the stan-

dard approach towards the social welfare maximizing care and activity levels for the parties.

Section 3 shows how the claims in literature about existence of equilibrium under negligence

liability rules do not hold. In Section 4, we explain the nature of underlying problems with

the standard models. In Section 5, we discuss the problems with the efficiency analysis of

liability rules. In Section 6, we discusses conclusions and shortcomings of our analysis.

2. The Standard Model and its extensions

2.1 Basics

Following the notations in Dari-Mattiacci, Lovat and Parisi (2014), there are two people,

U and V . They engage in activities that create a risk of an accident. Both parties are

private benefit maximizing and risk-neutral individuals. While U is the potential injurer, V

is the potential victim. That is, if an accident takes place, person U will be the injurer and

person V will be the victim. We will use terms ‘the injurer’ and ‘party U ’ interchangeably.

Similarly, for ‘the victim’ and ‘party V ’. Entire accident costs fall initially on the victim,

V . A court adjudicates any dispute between U and V over the accident loss.

For example, U may be the driver of a large old truck in rough condition, and V may

be the driver of an expensive new BMW. They share the same roads. If they collide, all

damages will fall on V . Alternatively, U may be a soldier practicing shooting in a forest

area, and V may be a nearby stroller. If a bullet misses its target, all damages may fall on

V .

Each person makes two choices: a level of ‘care’ and an ‘activity’ level. For instance, in

the old-truck new BMW example, each driver can vary his level of care (controlling their

speed, obeying traffic signals, remaining sober, etc, all of which are translated into a ’care’

level, measured in dollars). Parties can also vary their activity level. The activity level

might be miles driven, for instance.

Formally, care levels for U and V are x and y, respectively. These variables are observable

by U and V , and by the court. The activity levels for U and V are denoted by s and t,

5For a discussion, see Singh (2006) and Dari-Mattiacci, Lovat, and Parisi (2014).
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respectively. These are not observable by the court. All 4 variables, s, x, t and y, are

non-negative. The care levels x and y are measured in dollars. Depending on the nature

of the activity, activity levels may be measured in some other unit, for instance number of

miles driven.

Let U(s, x) be the benefit (utility) function for the injurer. It depends on his activity

level s and his care level x. Benefit is measured in dollars. Similarly, the victim V has a

utility/ benefit function V (t, y) that depends on his activity level t and his care level y. This

is also measured in dollars. Both benefit functions have the usual smoothness properties

and are public knowledge. Additional properties of these utility functions are discussed in

the next section.

The severity of an accident might depend on x and y, but the probability of an accident

might depend on s and t, as well as on x and y. Formally, the accident (prevention)

technology is captured by the function L(s, x, t, y). It denotes the expected value of the

accident loss. L(s, x, t, y) is decreasing and convex in x and y but increasing and weakly

convex in s and t. In general, L(s, x, t, y) will vary across accident contexts. For instance,

in the event of an accident, if the loss suffered by the victim is a constant, D, and the

probability of accident is given by function p(s, x, t, y) = s t
1+x+y , then L(s, x, t, y) = p(.)D =

s tD
1+x+y .

2.2 The Standard model and its Extensions

In general, different accidents involve different combinations of injurers and victims. One

accident may involve an old truck and a new BMW, the another may involve a car hitting a

pedestrian, or a practicing shooter injuring, by mistake, a nearby stroller, etc. A particular

accident context can be characterized by specifying the identities of potential injurer and

victim involved along with the properties of the accident loss reduction technology. For-

mally, a particular accident context can be characterized by the choice of specific payoff

functions U(.) and V (.) for the injurer and the victim, along with the expected loss func-

tion L(.). The individual preferences (utility/ payoff functions) can vary across injurers and

victims. Therefore, the exact specification of payoff functions U(.) and V (.) will vary across

accident contexts.

Moreover, the magnitude of loss in the event of an accident generally depends on the

contexts, e.g., the type of vehicles involved in the accident. It is also plausible that the

effectiveness of care may vary across injurers and victims - some people may be better

at exercising care than the others. So, exact properties of L(.) can vary across accident

contexts.

In any given accident situation, i.e., for any given combination of U(.), V (.) and L(.),

there is a Net Social Benefit or NSB. This is given by:

NSB(s, x, t, y) = U(s, x) + V (t, y) − L(s, x, t, y).

Since different accident contexts correspond to different choices (functional forms) of the

functions U(.), V (.) and L(.), and vice-versa. Therefore, the NSB(.) function also varies

across accident contexts.

The accident models in Dari-Mattiacci, Lovat and Parisi (2014) and Carbonara, Guerra

and Parisi (2016) are among the most general accident models used in the literature. These
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models admit any accident context from the following class of functions:6

(2.1) G =


U(s, x) : Ux < 0, Uxx ≤ 0, Us > 0, and Uss < 0;

V (t, y) : Vy < 0, Vyy ≤ 0, Vt > 0, and Vtt < 0;

L(s, x, t, y) : Lx(.) < 0, Ly(.) < 0, Ls(.) > 0, Lss(.) ≥ 0,

Lt(.) > 0, Ltt(.) ≥ 0, and Lst(.) ≥ 0.

It is easy to produce many different functional forms for U(.), V (.) and L(.) satisfying

properties in (2.1). Indeed, the general class G admits infinitely many accident contexts,

represented by different combinations of functional forms for U(.), V (.) and L(.).

As to the standard model used in Shavell (1980 and 1987) and subsequent literature, the

expected loss is defined as L = s t l(x, y) and the parties’ utility functions are specified as

U = u(s) − x s and V = v(t) − y t with the interpretation that functions u(s) and v(t)

denote the gross benefits to U and V, from their respective activities. The terms sx and

ty are interpreted as the cost of care for the injurer and the victim, respectively.7 In other

words, the standard model puts some structure on the forms of functions U(.), V (.) and

L(.) considered.

In fact, there are two versions of the standard model. The first version admits the

following class of functions:8

(2.2) S1 =


U(s, x) = u(s)− x s : us > 0, and uss < 0

V (t, y) = v(t)− y t : vt > 0, and vtt < 0

L(s, x, t, y) = s t l(x, y) : lx(.) < 0, ly(.) < 0.

This version of the standard model, takes the benefit function for the injurer, U , to be

a decreasing function of care level x. The gross benefit function for the injurer, u(.), is

assumed to be an increasing and strictly concave function of the activity level, s. Similarly,

V assumed to be a decreasing function of care level y, but v(.) is taken as an increasing and

strictly concave function of t.

One can produce many different functional forms for u(.), v(.) and l(.), all consistent

with the properties of S1.9

Under the second version of the standard model, gross marginal benefit to a party from

its activity are assumed to become negative beyond some threshold. Formally, u(.) starts

as an increasing function of s but eventually becomes a declining function beyond some

activity level. Likewise for v(.) and t. The second version admits the following class of

functions:10

(2.3) S2 =


U(s, x) = u(s)− x s : uss < 0, us > 0 for s < ŝ and us < 0 for s > ŝ

V (t, y) = v(t)− y t : vtt < 0, vt > 0 for t < t̂ and vt < 0 for t > t̂

L(s, x, t, y) = s t l(x, y) : lx(.) < 0, ly(.) < 0.

6Carbonara et al. (2016) have considered relaxing the concavity assumption as well.
7For more on these specifications, see Dari-Mattiacci et al. (2014, page 575).
8See Parisi and Fon (2004), Shavell (2007 a and b), Parisi and Singh (2009), Dari-Mattiacci, Lovat, and

Parisi (2014), and Miceli (2017).
9Some of the commonly used utility functions belong to this class, e.g., u(s) = α

√
s, u(s) = αsk, u(s) =

log(m + s), and u(s) = α
√
s√

1+s
, where α > 0, k < 1 and m ≥ 1; v(t) = γ

√
t, v(t) = γtk, v(t) = log(m + t),

and v(t) = α
√
t√

1+t
, where α > 0, k < 1 and m ≥ 1.

10E.g., see Miceli (1997), Shavell (1980) and (1987) and Singh (2006).
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where ŝ > 0, t̂ > 0.

Several leading utility functions fall in the class S2.11 In fact, S1 as well as S2 admit

infinitely many accident contexts - due to various possible forms of U(.) or V (.) or L(.) all

of which can be shown to satisfy all properties required by these classes.

Moreover, key properties of both versions of the standard model are:12

s = 0 ⇒ L(s, x, t, y) = 0

t = 0 ⇒ L(s, x, t, y) = 0(2.4)

Lst(.) > 0.

Informally put, the types of accidents covered by the standard model are the ones that can

happen only when activity levels are positive for both the parties. In addition, the marginal

effect of the activity of a party on the accident loss is strictly increasing in the activity of

the other party. In the context of bilateral-care and bilateral-activity accidents, these are

highly intuitive and plausible assumptions. It is common to assume that for the classes S1,

S2 and G, U(0, x) = 0 = V (0, y).

The standard model and all its extensions define the social welfare maximization problem

as follows:

(2.5) max
s,x,t,y

{NSB(s, x, t, y) = U(s, x) + V (t, y)− L(s, x, t, y)}

It is standard to assume that for the functions U(.), V (.) and L(.) admissible under G, S1

and S2, are such that the social welfare maximization problem (2.5) has a unique solution

(see Shavell (1980, 1987), Dari-Mattiacci et al. (2014, p 576) among others). The solution,

denoted (s∗, x∗, t∗, y∗), is assumed to be fully identifiable by solving the first-order conditions

(FOCs):

Us(s, x)− Ls(s, x, t, y) = 0(2.6)

Ux(s, x)− Lx(s, x, t, y) = 0(2.7)

Vt(t, y)− Lt(s, x, t, y) = 0(2.8)

Vy(t, y)− Ly(s, x, t, y) = 0(2.9)

2.3 Liability: Negligence and No-fault

When an accident occurs, the victim V initially incurs the entire loss. Afterwards, a

court adjudicates the dispute between U and V . That is, the court determines what part of

the loss will fall on each of the two parties. Under the standard model, a court determines

the share of damages to fall on each of the two parties, contingent only on the chosen care

levels - since activity levels cannot be observed by courts or since legal restrictions prohibit

taking activity levels into account. Specifically, the literature based on the standard model

assumes that the court cannot observe s and t, but it can observe x and y. Accordingly,

the court determines the share of the injurer, λ, in the accident loss as function of x and y.

The share of loss remaining with the victim is 1− λ(x, y).

11E.g., u(s) = s( δ−s), u(s) = α
√
s√

1+s
−δs, u(s) = α

√
s−δs, u(s) = αsk−δs, and u(s) = log(m+s)−δs,

where α, δ > 0, k < 1, m ≥ 1; v(t) = t(δ − t), v(t) = α
√
t√

1+t
− δt, v(t) = γ

√
t − δt, v(t) = γtk − δt, and

v(t) = log(m+ t)− δt, where α, δ > 0, k < 1, m ≥ 1.
12Note that under G, accident contexts with Lst(.) = 0 are also admissible.
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Negligence Liability. Under negligence liability, depending on the rule, the court sets

due care standards either for the injurer or for the victim, or for both. Under the standard

model, the court uses x∗ and y∗ as the due care standards for U and V , wherever applicable;

where x∗ and y∗ come from the profile (s∗, x∗, t∗, y∗), as defined above. Accordingly, a neg-

ligence liability based rule determines shares of damages to fall on each of the two parties,

contingent on x, x∗, or on y and y∗, or contingent on both. The leading negligence-based

liability rules can be described as:

1. Simple negligence. This rule says λ = 1 (all the loss is placed on the injurer) if and

only if x < x∗ (the injurer is negligent). Otherwise, λ = 0 (all the loss stays with the

victim).

2. Negligence with a defense of contributory negligence. This rule says that λ = 1 if

and only if x < x∗ and y ≥ y∗ (the injurer is negligent and the victim is non-negligent).

Otherwise, λ = 0.

3. Strict liability with a defense of contributory negligence. This rule says λ = 1 if and

only if y ≥ y∗. Otherwise, λ = 0.

4. Comparative Negligence. This rule says λ = 1 and if and only if x < x∗ and y ≥ y∗;

λ = 0 if and only if x ≥ x∗ (the injurer is non-negligent); and when x < x∗ and y < y∗

(both are negligent), the loss is split in proportion to their degrees of negligence.

Besides the above rules, we will consider the following negligence liability based rules.

5. The 50/ 50 split liability when both are negligent. This rule says that λ = 1 if and

only if x < x∗ and y ≥ y∗; λ = 0 if and only if x ≥ x∗; and λ = 1/2 and 1 − λ = 1/2 (the

loss is split 50/ 50) when x < x∗ and y < y∗ (both are negligent).

6. The 50/ 50 split liability when both are non-negligent. This rule says λ = 1 and if and

only if x < x∗; λ = 0 if and only if y < y∗ and x ≥ x∗ ; and λ = 1/2 (the loss is split 50/

50) when x ≥ x∗ and y ≥ y∗ (both are non-negligent).

For the negligence liability based rules, the following axiom holds:

Axiom (A1): Party U is considered negligent if and only if x < x∗, and similarly, party V

is negligent if and only if y < y∗.

Note that if a party is negligent it does not mean that it will necessarily be liable. For

example, under simple negligence rule when y < y∗ and x < x∗ hold, only the injurer is

liable.

In addition to Axiom (A1), an important property of the above negligence-based liability

rules is as follows: When an accident occurs, if a court finds that one of the parties is

negligent while the other is not, it places all the damages on the negligent party. We state

this property as:

Axiom (A2): [x ≥ x∗ & y < y∗ ⇒ λ = 0] and [x < x∗ & y ≥ y∗ ⇒ λ = 1].

All the liability rules considered in this paper are such that the liability shares of the

injurer, λ, and of the victim, 1 − λ, always add up to one. While the liability rules 1-6
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are all negligence-liability based rules, we will refer to rules 1-5 as the standard negligence

liability rules given their prevalence in the literature.

No-fault Liability. The next two liability rules are no-fault rules.

7. Strict liability for injurer. This rule says λ = 1 always, i.e., for any x, x∗, y, or y∗.

8. No liability for injurer. This rule says λ = 0 always, i.e., for any x, x∗, y, or y∗.

These definitions of the strict liability and no liability rules are standard in the literature.

The rule of strict liability is a no-fault liability rule since it holds an injurer of accident

liable even when the injurer was not at fault (he is not negligent). Similarly, the rule of no

liability may hold the victim liable regardless of whether he is at fault or not. These two

rules do not satisfy Axiom (A2).

Note that under each of the above liability rules number 1-8, liabilities of the two parties

are coupled in that the liability shares λ and 1− λ always add up to one.13

2.4 Individual Choices

Given that the shares of accident loss are determined by the court in view of the liability

rule in force, the injurer and the victim act accordingly. Formally, a liability rule generates

a normal form game with U and V as players. Each party wants to choose an activity level

and a care level to maximize his benefit function net of the expected damages placed on him

by the liability rule. Specifically, given t and y chosen by V , the injurer wants to choose s

and x to maximize:

U(s, x) − λ(x, y)L(s, x, t, y).

Similarly, given s and x chosen by U , the victim wants to choose t and y to maximize:

V (t, y) − (1− λ(x, y))L(s, x, t, y).

A Nash equilibrium under a rule serves as a predicted outcome under the rule. Following

the mainstream, we consider only pure strategy Nash equilibria while examining equilibrium

outcomes under liability rules.

Note that under a liability rule, the sum of the net benefit functions of the injurer and

the victim (in the general case) is equal to

U(s, x) + V (t, y) − L(s, x, t, y) = NSB(.).

3. Is there an Equilibrium Under Negligence Rules?

As discussed earlier, the literature claims that standard liability rules induce Nash equi-

libria. In fact, existence of an equilibrium is taken for granted for standard negligence based

rules as as well as for the no-fault liability rules discussed above.

In this section we show that the claims about the existence of equilibria under liability

rules do not necessarily hold. We do so by providing several examples of accident contexts

that meet all the conditions of standard models, yet none of the standard negligence based

13In general, a liability mechanism can be called de-coupled if under it, the liability shares do not always

add up to one. For a comprehensive analysis of the de-coupled liability when activity levels are constant,

see Jain (2004). Also, see Kaur and Kundu (2020).
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liability rules induces an equilibrium. We show that even the no-fault rules may fail to

induce an equilibrium under the standard model.

3.1. Standard Negligence. To start with, consider the following example corresponding

to version 1 of the standard model, i.e., classes S1.

Example 1: Let U(s, x) = s1/2 − x s, V (t, y) = t1/2 − y t, accident loss D = 50 and

L(s, x, t, y) = 50 s t
1+x+y . So,

NSB(.) = s1/2 − x s + t1/2 − y t − 50 s t

1 + x+ y
. �

Consistent with version 2 of the standard model, i.e., class S2, we will work with the fol-

lowing example.

Example 2: Let U(s, x) = s1/2 − 0.01 s − x s, V (t, y) = t1/2 − 0.01 t − y t, accident loss

D = 50 and L(s, x, t, y) = 50 s t
1+x+y . So,

NSB(.) = s1/2 − 0.01 s − x s + t1/2 − 0.01 t − y t − 50 s t

1 + x+ y
. �

For the accident context in Example 1, the first-order conditions for maximizing theNSB(.),

i.e., equations (2.6)-(2.9), lead to the following solution:

(s∗, x∗, t∗, y∗) = (0.0585468, 0.355473, 0.0585468, 0.355473).

Similarly, for the accident scenario in Example 2, the system of the first-order conditions

results in the following solution:

(s∗, x∗, t∗, y∗) = (0.0582945, 0.353629, 0.0582945, 0.353629).

For the ease of illustration, we have chosen symmetric payoff and loss functions. All nu-

merical computations in this paper are done using Mathematica. Figures are precise up to

the sixth decimal point. The Mathematica file with detailed calculations are available on

request.

Next, we introduce some terms. Let s∗d denote the private benefit maximizing activity

level for the injurer when he simply opts for the due care level x∗, but does not bear any

part of the accident costs. Formally, s∗d solves

max
s
{U(s, x∗)}

Likewise, for the victim, let t∗d solve

max
t
{V (t, y∗)}

That is, the victim will chose t∗d as his activity level if he opts for the due care level y∗

and gets full compensation for the accident costs.14

Now, we turn to the claims in literature about the existence of Nash equilibria under

various liability rules. If the claims in the literature are correct, an application of the

standard model approach to the above examples should enable us to find an equilibrium

under negligence based liability rules, since the chosen examples meet all the conditions of

the relevant versions of the standard model.

14On various interpretations of ’full’ compensation, see Singh (2005, 2007)
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In the rest of this section, we investigate existence of a Nash equilibrium. To this end, we

will strictly follow the standard procedure towards identification of the first best and setting

of due care standards for the parties. Yet, we will show that an equilibrium does not exist

under any of the standard negligence based rules; neither does it exist under the rule of

strict liability with the defense of contributory negligence. In fact, the rule of strict liability

as well as the rule of no-liability for the injurer may also fail to induce an equilibrium. Our

first claim is about simple negligence.

Claim 1. Under the rule of simple negligence, a Nash equilibrium is not guaranteed.

Here is why the claim holds. Let’s start with Example 1. Consider a choice of care level,

say x, by party U . Recall, for accident context in example 1, x∗ = 0.355473. The following

cases arise.

Case 1: x > x∗. Obviously, under simple negligence, there cannot be a Nash equilibrium

in which party U opts for x > x∗.

Case 2: x = x∗. Under the simple negligence rule, by choosing x∗ U ensures that all

damages fall on V. So he will solve for the payoff maximizing s to go along with x∗, i.e. he

will solve: maxs

{
U(s, x∗) = s1/2 − s x∗ = s1/2 − 0.355473 s

}
; it can easily be checked that

his payoff maximizing activity choice is s∗d = 1.978455. That is, in this case the injurer will

choose the pair (x∗ = 0.355473, s∗d = 1.978455). Given these choices by U , party V bears

all of the accident loss. So, V will choose t and y that solves

max
t,y

{
t1/2 − y t− 50× 1.978455× t

1 + 0.355473 + y

}
.

Party V ’s best response, identified by the FOCs and second order conditions (SOCs), is

to choose t = 0.000727586 and y = 8.59052. In other words, for the choice of x∗ by

party U to be part of a Nash equilibrium, the following should hold: the choice of (x∗ =

0.355473, s∗d = 1.978455) by party U and choice of (y = 8.590, t = 0.000727586) by party

y should be mutually best responses. However, given that (y = 8.590, t = 0.000727586) is

chosen by V , (x∗ = 0.355473, s∗d = 1.978455) is not a best response for U because: At x∗

and s∗d = 1.978455, the payoff for U is 0.70329; in contrast, if he opts for x = 0 with s =

17374.66, his payoff increases to 65.9065. This means that a Nash equilibrium cannot have

party U choosing x∗.

Case 3: x < x∗. Finally, consider the case, x < x∗. This would make U negligent

under simple negligence liability. So, all damages will fall on U , no matter what V does.

Therefore V will set his care level y = 0, and will choose the largest t possible. This means,

the victim’s problem is to maximize V (t, 0) =
√
t, which has no solution. That is, if U opts

for x < x∗, a best response for the victim does not exist. Therefore, a Nash equilibrium is

not possible with the injurer opting for x < x∗.

Similarly, a Nash equilibrium is not possible under Example 2. Recall, in this case x∗

= 0.353629. Repeating the steps in Cases 1 and 2 above, it can easily be seen that there

cannot be any Nash equilibrium with x > x∗ or x = x∗ opted by U . So, consider the case

of x < x∗. Now, U is fully liable. So V will set his care at the minimum level y = 0, and

will choose the activity level t = 2, 500 to maximize his payoff. Given these choices by V ,

there is no best response for U in the region x < x∗. The choice of x∗ = 0.353629 and

s = 1.890707 gives U a payoff of 0.68751; any other choice gives him strictly lower payoffs.
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Again, a Nash equilibrium is not possible if the injurer opts for x < x∗.

In other words, a Nash equilibrium cannot exist under the simple rule of negligence. �

Next, consider the rule of strict liability with a defense of contributory negligence. This

rule is the mirror image of that of simple negligence. Swapping the parties with one another,

in view of the symmetry in the functional forms, arguing along the lines in the above claim,

it can be seen that the following claim holds:

Claim 2. A Nash equilibrium is not guaranteed under the standard rule of strict liability

with a defense of contributory negligence.

Next, we have the following claim.

Claim 3. Under the rule of negligence with a defense of contributory negligence, a Nash

equilibrium is not guaranteed.

As under simple negligence, under this rule, party U has no liability as long as x ≥ x∗.

Moreover, as long as x ≥ x∗, payoffs and incentive structures are the same for both the

parties as under the rule of simple negligence, regardless of the choice of s by U and of t

and y by party V . So, it is easy to see that there cannot be a Nash equilibrium involving

a choice of x ≥ x∗ under the rule of negligence with defense of contributory negligence.

Therefore, the only possibility of a Nash equilibrium is when the injurer opts for x < x∗.

Suppose there is a Nash equilibrium in which party U chooses some x < x∗. As to the

choice of y by party V , when x < x∗, a choice of y > y∗ is never a best response. So, there

are two possibilities for a Nash equilibrium: y < y∗ or y = y∗. In the former case, i.e.,

when y < y∗, party V is liable under the rule of negligence with defense of contributory

negligence, regardless of the choices made by party U . Therefore, under an equilibrium in

Example 2, U must maximize his gains by choosing care level x = 0, and s = 2, 500. This

is not good for party V . Specifically, given x = 0 and s = 2, 500 opted by U : a choice

involving y < y∗ by party V gives him a payoff less than 0.000354049; party V is better off

choosing y∗ and t = 1.890707 as it gives him a payoff of 0.68751. Therefore, when x < x∗

and y < y∗, a Nash equilibrium is not possible.

Finally, consider the case where party U chooses some x < x∗ but party V opts for

y = y∗. But, this would mean that all damages will fall on U , as long as V keeps his y = y∗.

With y = y∗, the unique best choice for party V is to choose t∗d, as defined above. In this

contexts t∗d = 1.890707. Given these choices by V , it can be seen that party U is better

off choosing x∗ = 0.353629 and s = 1.890707, thereby getting a payoff of 0.22025, rather

than any other choice involving x < x∗ that will give U less than 0.0138105. Again, a Nash

equilibrium with x < x∗ is not possible.

Similarly, it can be seen that there is no Nash equilibrium with Example 1 either. �

In fact, arguing along the lines of the above claims, we can make the following claim

about the rule of 50/ 50 split liability when both parties are negligent.

Claim 4. A Nash equilibrium is not guaranteed under the rule of 50/ 50 split liability when

both parties are negligent.

This rule differs from the rule of simple negligence and the rule of negligence with a defense

of contributory negligence only in the sub-domain of x < x∗ and y < y∗. Specifically, in
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the view of the above proofs, it is straightforward to see that under the rule of 50/ 50 split

liability, there cannot be an equilibrium in which U opts for x ≥ x∗; or when U opts for

x < x∗ and V opts for y ≥ y∗. Therefore, we examine the existence of a Nash equilibrium

only in the region x < x∗ and y < y∗.

In this both parties negligent region, for Example 1, the optimization problem for U be-

comes: Given t, y, solve

max
s,x

{
s1/2 − x s− 50 s t

2(1 + x+ y)

}
.

The optimization problem for V is: Given s, x, solve

max
t,y

{
t1/2 − y t− 50 s t

2(1 + x+ y)

}
.

These optimization problems give us the following set of first-order conditions:

(1/2)s−1/2 − x− 25 t

1 + x+ y
= 0,

−s+
25 s t

(1 + x+ y)2
= 0,

and

(1/2)t−1/2 − y − 25 s

1 + x+ y
= 0,

−t+
25 s t

(1 + x+ y)2
= 0.

This system of FOCs has a unique solution: s = 0.086245 and x = 0.234187, t = 0.086245

and y = 0.234187. Moreover, in the region x < x∗ and y < y∗, the choice of s = 0.086245 and

x = 0.234187 by party U is a best response to the choice of t = 0.086245 and y = 0.234187

by party V , and vice-versa.15 At these symmetric choices, each party gets a payoff of

0.14948185. However, if U unilaterally deviates to x∗ = 0.355473 and s∗d = 1.978455, it

gives him a higher payoff, 0.70329. Hence, in the sub-domain of x < x∗ and y < y∗ there

cannot exist a Nash equilibrium under this rule.

Similarly, it can be seen that for Example 2 also, there is no Nash equilibrium. �

Next, we turn to the rule of comparative negligence. In view of the above arguments,

it is obvious that under the comparative negligence rule, there cannot be an equilibrium

in which U opts for x ≥ x∗, or when U opts for x < x∗ but V chooses y ≥ y∗. So, the

only possible Nash equilibrium choices are x < x∗ by U and y < y∗ by V . Under both

parties negligent region, there cannot exist a symmetric Nash equilibrium under the rule of

comparative negligence. To see, consider Example 2. In view of the arguments presented

for Claim 4, it is easy to see that the only candidate for a symmetric Nash equilibrium is:

s = 0.086245 and x = 0.234187 opted by party U , and t = 0.086245 and y = 0.234187

chosen by party V . However, if U unilaterally deviates to x∗ = 0.353629 and s = 1.890707,

he gets a higher payoff. Similarly, under Example 2, there cannot exist a symmetric Nash

equilibrium under the standard rule of comparative negligence. Due to the complexity of

the calculations involved, we have not been able to rule out the possibility of an asymmetric

Nash equilibrium with both parties being negligent.

15That is, the second order conditions hold.
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3.2. Beyond Standard Negligence. So far, we have considered the standard negligence

based rules that do not allow for sharing of accident loss between non-negligent parties.

For the accident contexts in above examples, all of these rules have failed to induce an

equilibrium, even though we have strictly followed the standard procedure prescribed for

identification of the first best, and for setting the due care standards for the parties.

The problem of non-existence goes beyond the above examples. It can easily be verified

that our claims of non-existence also hold for values of D different from D = 50 in the

expected loss function, L(.). Similarly, in Example 2, we have verified the non-existence

claims by replacing terms 0.01s and 0.01t with other similar changes in the benefit functions

U(.) and V (.). Such changes in the expected loss function and/or in the utility functions

amount to changing the accident contexts. In other words, our claims about non-existence

of equilibrium can be shown to hold for many different accident contexts fully compatible

with the standard model.

This shows that the prevalent claims about the equilibrium outcomes under standard

negligence based liability rules do not hold, in general.

Indeed, the problem of non-existence of equilibrium extends well beyond the above ex-

amples and negligence based standard liability rules. Consider the rule of strict liability for

injurer. Under this rule λ(x, y) = 1, regardless of the choice of x and y made by the parties.

Now take any accident context from class S1 or class G, discussed above. Under the strict

liability rule all damages fall on U , no matter what V does. Therefore V will set his care

level y = 0, and will choose the largest t possible. In other words, the victim’s problem is

to choose t so as to maximize V (t, 0). However, for utilities belonging to classes S1 or G,

marginal benefit from the activity are always positive, i.e., Vt > 0 always; which means the

victim would like to increase his activity beyond any limit. That is, a best response for the

victim does not exist. Therefore, a Nash equilibrium cannot exist under the rule of strict

liability for the injurer. This logic applies to each and every accident contexts in S1 and G.

Similarly, it can be seen that for classes S1 and G, a Nash equilibrium cannot exist under

the rule of no-liability for the injurer.

To sum up, our results show that the problem of non-existence of equilibrium is a serious

concern. Equilibrium cannot be taken for granted. To be clear, our results do not imply that

a Nash equilibrium can never exist under a liability rule. Depending on the accident context

and the liability rule in force, a Nash equilibrium may or may not exist. To illustrate this,

we turn to a rule that splits the accident loss between non-negligent parties, i.e., liability

rule number 6. Interestingly, this rule has a Nash equilibrium!

Claim 5. For accident contexts in Examples 1 and 2, there exists a Nash equilibrium under

the rule of 50/ 50 split liability when both parties are non-negligent.

Specifically, this liability rule works like this: U bears all the loss when he is negligent;

that is, when x < x∗. V bears all the loss when y < y∗ and x∗ ≤ x. When x∗ ≤ x and

y∗ ≤ y, the loss is split 50/ 50.

Consider Example 1. From the arguments in Claim 1 above, it can be seen that as under

the rule of negligence, under this rule as well, there cannot be a Nash equilibrium involving

the choice of x < x∗ by party U , or a choice of x ≥ x∗ by party U and some y < y∗ by party

V . Therefore, let us consider the region x∗ ≤ x and y∗ ≤ y, with both parties non-negligent.

To see that a Nash equilibrium exists, suppose x∗ = 0.355473 and y∗ = 0.355473 are chosen

by U and V , respectively. At these care level choices, liability share of each party is 1/2.
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Therefore, the choices of s and t by the parties are characterized by the following FOCs:

(1/2) s−1/2 − 0.355473− 25 t

1 + 0.355473 + 0.355473
= 0,

(1/2) t−1/2 − 0.355473− 25 s

1 + 0.355473 + 0.355473
= 0.

This system has a unique solution with s = t = 0.089838. Now, it can be seen that given

the choice of (t, y) = (0.089838, 0.355473) by V , the pair (s, x) = (0.089838, 0.355473) is

a unique best response for U identified by the first and second order conditions, and vice-

versa. That is, (0.089838, 0.355473, 0.089838, 0.355473) is a Nash equilibrium under the

rule of 50/ 50 split liability. Replicating the above steps, it can be seen that for Example 2,

(0.089379, 0.353629, 0.089379, 0.353629) is a Nash equilibrium under the rule. �

This result also speaks to the issue of loss sharing between non-negligent parties. Claim

5 shows that splitting of accident loss between non-negligent parties, rather than diluting

the incentives of the parties to take due care can actually strengthen them.16

4. Problems with the Standard Model

In this section we turn to some serious issues with the standard model and their impli-

cations for the economic analysis of liability rules. We show that for a large set of accident

contexts, the social welfare function, NSB(.), either does not have a maximum, or has a

solution that can not be discovered using the first order conditions. In the next subsection,

we will analyze several inherent problems with the standard care-activity models.

4.1 The Missing Maxima

In this subsection, we will show that the existence of welfare maximizing care and activity

levels cannot be taken for granted in traditional precaution-activity models. Specifically,

we will show that for many accident contexts belonging to classes S1,S2 and G, the social

welfare function, NSB(.), does not have a maximum at all or does not have an interior

maximum. Non-technical readers may want to skip the technical details below.

To start with, consider the social benefit function NSB(.) = U(.) + V (.)− L(.) generated

by the benefits and accident loss functions admissible under the first version of the standard

model version. E.g., take any L(.) ∈ S1 and consider simple forms for U(.) and V (.), as in

the following class of functions:

(4.1) C1 =


U(s, x) = αsk − s x, α > 0 and 0 < k < 1;

V (t, y) = βtj − t y β > 0 and 0 < j < 1;

L(s, x, t, y) ∈ S1 .

Clearly C1 ⊂ S1. For this class, the social welfare as measured by NSB(.) becomes:

(4.2) NSB(.) = α sk − s x+ β tj − t y − s t l(x, y).

Even though the utility functions satisfy the Inada conditions with respect to activity levels,

this NSB(.) has no maximum. To see why, fix x = y = t = 0. Now NSB(.) = α sk. It is

16Dari-Mattiacci et al. (2014) also show that loss can be shared between non-negligent parties without

diluting the care incentives. Their results are derived for accident contexts different from ours.
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unbounded in s and approaches∞ as s→∞. Alternatively, if we fix x = y = s = 0 and let

t → ∞, the NSB(.) approaches ∞. The same logic applies if we replace u(s) = α sk with

u(s) = log (m+ s), or replace v(t) = β tj with v(t) = log (m+ t) where m ≥ 1. In fact, this

logic applies to any NSB(.) based on the following class C2:

C2 = {U(.), V (.), L(.) ∈ S1 | U(.) or V (.) is unbounded}

Even if the Inada conditions are imposed on the utility and expected loss functions the

NSB(.) cannot achieve a maximum as long as U(.) or V (.) is unbounded from above. To

see, hold t = 0. Now, U(.) and hence NSB(.) can be increased beyond limits! In other

words, the objective of maximizing the NSB(.) cannot be achieved.

Mathematically speaking, the set of functional forms of U(.) that are increasing, concave

and unbounded above in s is infinite. Similarly, infinitely many forms of V (.) are increasing,

concave and unbounded in t. On this count itself, the classes C2, S1 and G each contains

infinitely many combinations of U(.), V (.), and L(.), for which NSB(.) cannot be maxi-

mized.17 So, we can conclude that for infinitely many accident contexts, admissible under

the standard model and the class G, there exists no maximum.

The problem of non-existence of maxima for the above classes can be attributed to the

fact that utilities are unbounded above in s or t but bounded from below. Next, consider

the case where utilities are unbounded from below.

First consider log utilities; U(.) = log s− s x and V (.) = log t− t y. For log utilities, zero

activity by either party cannot be the optimum. Using L(s, x, t, y) = 50s t
1+x+y , maximization

of the NSB(.) will solve:

(4.3) max
s,x,t,y

{
log s − s x + log t − t y − 50 s t

1 + x+ y

}
.

The system of FOCs for this problem has a unique solution:(s, x, t, y) = (29 ,
7
6 ,

2
9 ,

7
6).

The value of the NSB at this point is −4.26741. The solution of the FOCs is neither a

local maximum nor minimum18 However, there are two social welfare maximizing profiles

of care and activity levels, i.e., there are two global maxima identified by the Numerical

maximization using Mathematica. There are; the point (s, x, t, y) = (1.927×108, 0, 3.698×
10−6, 104250) and its mirror image (s, x, t, y) = (3.698 × 10−6, 104250, 1.927 × 108, 0).

That is, the social welfare is maximized at a corner point. At each global maximum, the

NSB is 5.885.

In the above and following examples, we deliberately work with symmetric utility and

accident loss functions; it is easier to produce corner maximum when the payoff functions

are asymmetric.

Next, consider maximization of the following:

(4.4) max
s,x,t,y

{
log s − s x + log t − t y − 50 s t

1 +
√
x+
√
y

}
.

This also suffers from similar problems. The system of FOCs has a unique solution:

(s, x, t, y) = (0.211713, 0.627753, 0.211713, 0.627753). The value of the NSB at this point is

17Note S1, S2 are not subset of G .
18The FOC solution fails to satisfy the SOCs. The Hessian is neither negative definite nor positive

definite. See file ‘Log utility combined’.
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−4.23795. The solution fails to satisfy the SOCs. The Numerical maximization using Math-

ematica gives two global maxima; the point (s, x, t, y) = (7.615×10−10, 4.374×108, 3.664×
1011, 0) and its mirror image (s, x, t, y) = (3.664 × 1011, 0, 7.615 × 10−10, 4.374 × 108). At

each point the NSB is 4.63. Again, the first best solutions (the global maxima) remain

corner points. Welfare maximization requires one of the parties to take no care at all and

the other to reduce activity level to almost zero.

While attempting to obtain an interior solution, it is difficult to think of functions more

suitable than the ones under (4.4). This combination of functions satisfies Inada type

conditions, i.e., it guarantees the following for each variable: at the zero level of a variable,

the marginal benefit from increasing it is infinite, and marginal gains approach zero as the

variable approaches infinity. Still, the first order conditions throw up solution which is

neither a maximum nor minimum.

In the above NSB functions, the problem of non-existence of maxima or a corner maxi-

mum may be attributable to the fact that utilities considered by us are unbounded. So, let

us consider some leading classes of bounded utilities. First, consider:

(4.5) C3 =


U(s, x) = s1/2 − δs− s x,
V (t, y) = t1/2 − δt− t y
L(s, x, t, y) = s tD

1+x+y ,

where δ, D > 0. As Table 1 in the Appendix shows, for a large range of parameter δ and D,

the global maximum of the NSB function is a corner point, and hence unidentifiable by the

first order conditions. Changing the expected loss function also does not seem to help.19

A few remarks about the tables in the Appendix are in order. One, each table presents

results for different NSB functions derived from the class mentioned at the top of the

table. Different NSBs arise corresponding to different combinations of δ and D in the

relevant class mentioned at the top of the table. Two, for each combination of δ and

D, i.e., for each NSB, we have listed only one of the two corner maxima (the first best

solutions). For every maximum listed in the tables, its mirror image is also a maximum.

For example, the 1st row of Table 1 (δ = 0.1 and D = 50 in C3) lists only one social welfare

maximizing point (s, x, t, y) = (24.96370, 0, 5.13773 × 10−5, 34.32330), though its mirror

image, i.e., (s, x, t, y) = (5.13773 × 10−5, 34.32330, 24.96370, 0) is also a NSB maximizing

point. Three, the figures in each cell are precise up to the 5th decimal point.

Next, consider another bounded class.

(4.6) C4 =


U(s, x) = s(δ − s)− s x,
V (t, y) = t(δ − t)− t y,
L(s, x, t, y) = s tD

1+x+y ,

where δ,D > 0. For a wide range of parametric values belonging to this class, the solution

to the NSB maximization problem is not interior. The solution from FOCs is not even a

local maximum or a local minimum. See Table 2. Consider yet another class of bounded

19Even if we change the expected loss function to s tD
1+
√
x+
√
y

or to s tD
1+sx+sy

, the NSB(.) continues attain

maximum at a corner point.
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utilities:

(4.7) C5 =


U(s, x) =

√
s√

1+s
− δ s− s x,

V (t, y) =
√
t√

1+t
− δ t− t y

L(s, x, t, y) = s tD
1+x+y ,

δ, D > 0. For every accident context in class C5, the NSB function is bounded above by 2.

Yet, for many combinations of δ and D, the first best is a corner point, and hence cannot

be identified by the FOCs. See Table 3.

In the interest of brevity, tables below present results for a select combination of param-

eters. However, using the Mathematica code (available on request), it can easily be seen

that the results hold for a really large range of parameters. Actually, we have not been

able to find functional forms that are compatible with the standard models and deliver an

interior maximum.

Summing up, analysis of this sub-section shows that even for leading utility functions

used in economics, either a first best solution does not exist or there is no interior first best

solution. Specifically, for many accidents in classes S1 and G, the social welfare function

NSB does not have a maximum. Further, we have shown that for many other accidents in

C3−C5 and hence in S2, a global maximum is corner. It requires very high activity level

from one of the parties and essentially zero activity by the other party. The choice of zero

activity level by one of the parties has great social benefit of reducing the accident loss to

zero. Moreover, it reduces the cost of care for the party to almost zero.

4.2 The Inherent Problem

In this subsection, we discuss several ‘problems’ with the standard model and its gen-

eralizations. First of all, under commonly used specification of the standard model the

individual optimization problems do not have a solution even under the rule of strict lia-

bility and the rule of no-liability. Consider any accident context from class S1 and/or class

G. Suppose the rule in force is of no-liability for the injurer. Under this rule, the injurer

is not liable regardless of his choice of care and activity levels. So, he will choose zero

care and would want to choose activity level to maximize his private benefit. Formally, his

optimization problem for activity is

(4.8) max
s
{U(s, 0)}

But, for classes S1 and G, Us > 0 always. This means that there is no utility maximizing

choice for the injurer. Similarly, under the rule of strict liability, the victim’s maximization

problem

(4.9) max
t
{V (t, 0)}

has no solution under classes S1 and G, as Vt > 0 always.

Moreover, NSB(.), i.e., the social welfare function induced by the common specifica-

tions of the standard model does not possess properties assumed in the literature. Under

commonly used specifications of the model, such as classes C1 and C2 discussed above,

the social welfare function has no maximum value. Notably, these class of accidents meet

all the conditions of the model, yet the social welfare function does not have a maximum.

As discussed in the last section, this problem arises for infinitely many accident contexts
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from classes S1 and G. In the absence of a maximum for the social welfare function the

negligence standards would not be defined, what to speak of a Nash equilibrium under the

negligence rule that might be in place.

These problems arise because of unrealistic properties of classes S1 and G. Simply put,

commonly used specification S1 and G imply the following: If a party does not have to take

care, its activity is not self-limiting. In other words, if not required to take care, a driver

will keep on driving, a pedestrian will keep on walking!

These are implausible and unrealistic assumptions. At a bare minimum the individual

payoff functions U(.) and V (.) should be such that the activity levels are self-limiting.

However it is not enough to have self-limiting benefit functions. As is shown above, even

for several commonly used self-limiting utility functions (e.g., as in case of accident classes

C3−C5) the first best (which maximizes NSB) is not an interior point. Consequently, the

standard approach of using the first order conditions to identify the first best care levels is

misleading in many accident contexts.

The following key feature of the standard models seems to be a source of this problem:

L(.) = 0 if s = 0 or t = 0; see the expression (2.4).

On the face of it, an intuitive and plausible assumption. However, it makes the model

vulnerable to corner global maxima. If one party, say the victim, keeps his activity at zero,

it has two direct and significant social benefits. First, the expected accident loss is reduced

to zero, even if the injurer opts for very high level of activity and does not exercise care at

all. Second, the cost of care for the victim is also reduced to zero, even when he chooses

very high care. This second benefit arise from the specification of the cost of care in the

standard models - t y for the victim and s x for the injurer. So t = 0 implies ty = 0, even if

the care level y is very very large.

Our analysis presented above shows that for a large set of accident contexts, these two

gains dominate the opportunity cost, i.e, the forgone utility to the victim, which is kept

almost at 0.20

Therefore, the standard models are vulnerable to corner global maxima. This problem

does not go away even with some other specifications of the cost of care, i.e., instead of

specifying s x as cost of care for the injurer and t y for the victim, we let these costs be

simply x and y, respectively. We have also worked with the following costs functions:

s x+u for the injurer and t y+u for the victim.21 We have also tried other specifications

of the expected loss functions, such as L(.) = D s t
(1+x+y+u+v) or L(.) = D s t

(1+sx+ty+u+v) but the

social welfare functions continue to give corner solutions.

The corner maxima are not a problem per-se. What is problematic is that the analytical

framework produced by the standard model is inherently prone to generating too many

corner maxima. In other words, the standard models do not provide satisfactory framework

for analysis accidents contexts where the socially optimum activity levels are significantly

greater than zero for both parties, e.g., road accidents.

20This logic applies to positive but arbitrarily small levels of t, e.g., in case of log utilities as in (4.3) and

(4.4) above.
21In this specification, the cost of care has two components. s x can be thought of as injurer’s cost of

care that increases with activity level, e.g., keeping awake while on wheel. u, on the other hand, can be

interpreted as the care that does not varies with activity, e.g., the cost of annual regulatory check up of

vehicle.
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5. Problems with the efficiency analysis

Focus of the existing literature is on the efficiency properties of the negligence based

liability rules. With the exception of Dari-Mattiacci, Lovat, and Parisi (2014), this literature

is based on an implicit, at times explicit, assumption that the negligence based rules induce

an equilibrium. Moreover, the literature seems to assume that the negligence rules are more

efficient than the no-fault rules. However, as we have shown in Section 3.1, one cannot be

sure of existence of an equilibrium under any of the standard negligence based rules. In the

absence of a Nash equilibrium, it is not plausible to make any claim about efficiency of a

rule per-se or vis-a-vis other rules. Specifically, a negligence based liability rule cannot be

assumed to be more or less efficient than any other rule including the rule of strict liability

without precise specification of the accident context and ensuring existence of equilibria

under each of the rules being compared.

This holds true for the no-fault liability rules as well. As is shown in Section 3.2, for

a large class of accident contexts in class S1 and/or class G, a no-fault liability rule may

not have a Nash equilibrium. Therefore, it is not plausible to make general claims about

efficiency of a liability rule per-se or relative to another rule.

Moreover, by concentrating on presumed inner solutions from first order conditions, the

literature has aggravated the problem efficiency analysis. Even when the net social benefit

function has a maximum, the individual optimization problems are well defined, and each of

the liability rules under consideration induces a Nash equilibrium, a rule of no-fault liability

can be more efficient that a liability sharing negligence based rule.

To show this we introduce two terms. Let s∗0 denote the private benefit maximizing

activity level for the injurer when he takes no care at all and yet does not bear any of the

accident costs. Formally, s∗0 solves

(5.1) max
s
{U(s, 0)}.

Likewise, let t∗0 denote the benefit maximizing activity level for the victim when he takes

no care at all and yet is fully compensated for the accident costs. Mathematically, t∗0 solves

(5.2) max
t
{V (t, 0)}.

In view of the above, under classes S1 and/or class G, neither s∗0 nor t∗0 exist. However,

these are well defined for accidents in S2. So, we work with an example from this class.

When s∗0 exists, it is obvious that under the rule of no-liability for the injurer, U will

choose zero care along with s∗0 as the activity. Similarly, when t∗0 exists, under the rule of

strict liability, V will choose zero care along with t∗0 as the activity.

Now, let us consider the accident context of Example 2. Note that the net social benefit

function for this context arises as a special case of functions in C3 if we take δ = 0.01 and

D = 50. As can be seen from Row 2 of Table 1, for this NSB(.), there are two corner global

maxima: (s, x, t, y) = (2499.96, 0, 0, 352.551), and (s, x, t, y) = (0, 352.551, 2499.96, 0). At

these points, the NSB(.) = 25.0004. Note that the first maximum requires very high

activity and zero care from the injurer, along with extremely low activity but very high

care from the victim, and vice-versa for the second solution.

The first global maximum is achieved as a Nash equilibrium under the rule of no liability

for the injurer. Here is why. Since V bears the damages, U sets x = 0, yet he is not liable for

accident loss. So, to maximize his benefit, he chooses s = s∗0. In this case, s∗0 = 2, 500. Now,

given x = 0 and s = 2, 500 chosen by U , the best response for V is to choose y = 352.5534
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and extremely low level of activity at t = 0.22 That is, under no liability for the injurer, the

Nash equilibrium is: (s, x, t, y) = (2500, 0, 0, 352.5534), resulting in NSB = 25.0004 which

approximates the first of the global maxima.

By symmetry, under the rule of strict liability for the injurer, the equilibrium will be at

(s, x, t, y) = (0, 352.5534, 2500, 0); and the value of the NSB at this equilibrium will again

be 25.0004. In other words, the equilibrium under the rule of strict liability approximates

the second of the global maxima.

Now consider the liability sharing rule 6, i.e., the rule of 50/50 split liability when both

the parties are non-negligent. From Section 3 we know that under this rule the profile

(0.089379, 0.353629, 0.089379, 0.353629) is a Nash equilibrium for the accident context in

Example 2. But at this Nash equilibrium point, the value of the NSB = 0.29973, is much

less than 25.0004, the value of NSB at the equilibrium under the rule of no liability as

well as the rule of strict liability! Therefore, in some contexts, a no fault liability rule can

dominate a liability sharing negligence. Therefore, even in the contexts where equilibria

exist, focus on the negligence based rules over the no-fault rules is not justified.

Next consider the claim of increasing the social welfare under a negligence based rule

by raising the due care level. This strand of literature also implicitly assumes that the

negligence based rules induce and continue to induce a Nash equilibrium, even when the

due care standard are changed.23 This assumption is also misplaced. Our analysis shows

that for a negligence based rule, existence of an equilibrium can also depend on the due care

levels. For instance, in the context of Example 2, if the due care level for the injurer is set at

zero, then the rule of negligence induces an equilibrium - in that case, the simple negligence

rules becomes the rule of no-liability for injurer (a rule that induces an equilibrium, as

shown above). However, if the due care level is set at x∗ = 0.353629, from Claim 1 above,

we know that there cannot exits a Nash equilibrium under the simple negligence rule.

6. Conclusions and Limitations

The standard model of accidents introduced in Shavell (1980 and 1987) has been used in

much of the subsequent literature on economic analysis of liability rules. This commonly

used model specifies conditions on the individual benefit functions and also the accident

loss functions. Besides, it prescribes how the due care levels should be chosen under a

liability rule. In this paper, we have applied the standard model to several large classes

of individual utility functions and loss functions, including the functions commonly used

in economics. All functions used by us satisfy all the conditions of the standard model.

Moreover, we have followed the approach towards identification of the due care levels and

Nash equilibria, exactly as prescribed in the standard model. However, our findings are

very different from the claims in the existing literature.

Contrary to the mainstream claims, we have shown that the existence of an equilibrium

under a liability rule is not guaranteed; depending on the accident contexts and the rule in

force, a Nash equilibrium may or may not exist. This is as much true of negligence based

rules as for the no-fault rules, such as, the rule of strict liability and the rule of no liability

for the injurer.

22These y and t are a unique solution to V ’s problem: maxt,y{t1/2 − 0.01 t − y t− 50×2,500 t
1+y

.}
23See Goerke (2002) and Shavell (2007). For discussion see Singh (2006) and Dari-Mattiacci, Lovat, and

Parisi (2014).
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This finding has implications for the efficiency analysis of liability rules that has primarily

focused on negligence based liability rules. A strand of these works has attempted to

examine the effect of changing due care levels on the efficiency of the rule. However, when

the existence of a Nash equilibrium itself cannot be taken for granted, it is not plausible

to make general claims about efficiency of a rule per-se or vis-a-vis the other liability rules.

Specifically, a negligence based liability rule cannot be considered more or less efficient than

the rule of strict liability without precise specification of the accident context and ensuring

existence of equilibria under each of the rules being compared. Moreover, we have shown

that even if a Nash equilibrium exists under a negligence based liability rule, it may be

less efficient than a no-fault liability rule. In other words, we have shown that in many

accident contexts, the second best rule may be either the rule of strict liability or the rule

of no-liability for the injurer.

These implications of the standard models do not gel with the prevalence of negligence

liability rules in the real world, suggesting that either the efficiency does not play important

role in choice of liability rules or the standard model needs to be revised.

We have shown that the standard model is inherently vulnerable to several problems.

For several large classes of functions fully consistent with the standard model, a global

maximum does not exist for the net social welfare function; even individual choices not well

defined. For many other commonly used specifications of benefit functions, the solution to

the social welfare maximization problem is a corner point - it requires very high activity with

zero care from one of the parties, along with almost zero activity with very high care from

the other party. This is a problem because even with commonly used utility functions, the

standard model does not induce accident contexts where social efficiency requires strictly

positive care and activity levels from both the parties - for example, road accidents. Our

analysis identifies the key features of the standard model that make it vulnerable to corner

solutions.

Our results do have several limitations. We do not answer an important question: what

properties of utility and accident loss functions can guarantee an interior maximum? Ad-

dressing this question is important for the use of the first order conditions as a guide for

identifying the first best and also for explaining prevalence of the negligence based rules.

However, our analysis offers some insights on these concerns. We hope our findings will be

a useful guide for future research on the above issues.
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Tables 1-3

Appendix (Tables)

Table 1: Based on class C3

Function
parameters

FOC
solution

NSB(.) at
FOC solution

First Best
solution

NSB(.) at
First Best

δ = 0.1
D = 50

0.05607
0.33719
0.05607
0.33719

0.33068

24.96370
0

5.13773×10−5

34.32330

2.50358

δ = 0.01
D = 50

0.05829
0.35363
0.05829
0.35363

0.34097

2499.96
0

5.0141×10−7

352.551

25.0004

δ = 0.001
D = 50

0.05852
0.35529
0.05852
0.35529

0.34202

2.50000×105

0
5.00141×10−9

3.53453×103

2.50000×102

δ = 0.00001
D = 50

0.05855
0.35547
0.05855
0.35547

0.34213

2.5×109

0
5.00002×10−13

3.53553×105

2.50000×104

δ = 0.1
D = 5000

0.00498
1.99504
0.00498
1.99504

0.09542

24.99650
0

5.01346×10−7

3.52528×102

2.50035

δ = 0.001
D = 5000

0.00505
2.01205
0.00505
2.01205

0.09641

2.50000×105

0
5.00014×10−11

3.53543×105

2.50000×102

δ = 0.00001
D = 5000

0.00505
2.01222
0.00505
2.01222

0.09642

2.49994×109

0
9.07487×10−15

3.54363×106

2.50000×104

Columns 2 and 4 give solutions to the maximization problem in the order
s ,x , t ,y from top to bottom.
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Table 2: Based on class C4

Function
parameters

FOC
solution

NSB(.) at
FOC solution

First Best
solution

NSB(.) at
First Best

δ = 2
D = 50

0.05111
0.29926
0.05111
0.29926

0.08691

1.00003
0
0
0

1.0

δ = 5
D = 50

0.22643
1.18238
0.22643
1.18238

0.86443

2.50008
0
0
0

6.25

δ = 8
D = 50

0.50000
2.00000
0.50000
2.00000

3.00000

4.00003
0
0
0

16.0

δ = 10
D = 500

0.09450
2.93700
0.09450
2.93700

0.66748

5.00004
0
0
0

25.0

δ = 15
D = 500

0.20254
4.53164
0.20254
4.53164

2.12025

7.50006
0
0
0

56.25

δ = 20
D = 500

0.34858
6.10095
0.34858
6.10095

4.84493

10.0001
0
0
0

100.0

Columns 2 and 4 give solutions to the maximization problem
in the order s ,x , t ,y from top to bottom.

2



Table 3: Based on class C5

Function
parameters

FOC
solution

NSB(.) at
FOC solution

First Best
solution

NSB(.) at
First Best

δ = 1
D = 50

0.03579
0.16894
0.03579
0.16894

0.24023

0.12276
0

0.00989
1.47753

0.25786

δ = 2
D = 50

0.02373
0.04459
0.02373
0.04459

0.18161

0.02749
0

0.02099
0.17242

0.18176

δ = 1
D = 100

0.02661
0.31561
0.02661
0.31561

0.20857

0.13526
0

0.00456
2.67777

0.24375

δ = 2
D = 100

0.01873
0.18432
0.01873
0.18432

0.16373

0.03308
0

0.01124
0.81889

0.16609

δ = 1
D = 500

0.01293
0.77121
0.01293
0.77121

0.14728

0.14974
0

0.00083
7.65261

0.22558

δ = 5
D = 500

0.00516
0.30292
0.00516
0.30292

0.08028

0.00637
0

0.00431
0.78401

0.08060

Columns 2 and 4 give solutions to the maximization problem
in the order s ,x , t ,y from top to bottom.

3
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