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1 Introduction 
:II' 

Much research in empirical and theoretical econometrics has been centered around the esti~ 

mation and testing of vario~ flmctions such as regression functions (e.g., conditional mean 

and variance) and density functions. A traditional approach to studying these functions has 

been to fi.!st impose a parametric functional form and then proceed with the estimation and 

testing of interest. A major disadvantage of this approach is that the econometric analysis 

may not be robust to the slight data inconsistency with the particular parametric specific~ 

tion and this may lead to erroneous conclusions. In view of these problems, in the last five 

decades a vast amount of literature has appeared on the nonparametric and semi parametric 

approaches to econometrics, e.g., see the books by Hardle (1990), Fan and Gijbels (1996), 

and Pagan and Ullah (1999). The basic point in the nonpararuetric approach to econometrics 

is to realize that, in many instances, one is attempting to estimat.e an expectation of one 

variable, y, conditional upon others, x. This identification directs attention to the need to 

be able to estimate the conditional mean of y given x from the data Yt and Xt, t = 1, ... In. 

A nonparametric estimate of this conditional mean simply follows as a weighted average 

Lt w(Xt, x)Yt, where w(Xt, x) are a set of weights that depend upon the distance of Xt from 

the point x at which the condi tional expectation is to be evaluated. 

Based on these nonparametric estimation techniques of t.he conditional expectations, in 

recent years a rich literature has evolved on the consistent model specification tests in econo

metrics. For example, various test statistics for testing a parametric functional form have 

been proposed by Bierens (1982), UUah (1985), Robinson (1989), Eubank and Spiegelman 

(1990), Yatchew (1992), \\Tooldridge (1992), Gozalo (1993), Hardle and Mammen (1993), 

Hong and White (1995), Zheng (1996), Bierens and Ploberger (1997), and Li and Wang 

(1998). Also, see UUah and Vinod (1993), Whang and Andrews (1993), Delgado and Sten

gos (1994), Lewbel (1993, 1995), AIt-Sahalia et al (1994), Fan and Li (1996), Lavergne and 

Vuong (1996), and Linton and Gozalo (1997) for testing problems related to insignificance of 

regressors, non-nested hypothesis, semi parametric versus nonparametric regression models, 

among others. 110st of these tests, especially the test for a parametric specification, are 

developed under the following goodness of fit measures: (i) compare the expected values 

of the squared error under the null and alternative hypotheses (e.g., Ullah (1985) type F 

statistic), (ii) calculate the expected value of the squared distance between the null and 
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oJternaUve rnodel spc1::ificat.ic)l1s (e,g., Hlirdle £l.ud M~unmen (1993), Ullah and Vinod (1993), 

Ait.~SahEl.lia (1994)), and (iii) calculate the expect,ed value of the product of the error lUlder 

the null with the model specffied under t.he aH;ernative (e.g., conditional moment tests of 

BiercnS (1982), Zhang (1996), Fan and Li (1996), and Li and Wang (1998). All these three 

alternative ,goodness of fit measures are equal to zero lWder the null hypothesis of correct 

specification. For details, see Pagan and Ul1ah (1999). 

We note here that the asymptotic as well as the simulation based finite sample proper~ 

ties of the most of the above mentioned test statistics have been extensively analyzed for 

the cross sectional models with independent data. However, not much is known about the 

asymptotic as well as the small sample performance of t.hese test statistics for the ca.se of 

time series models with weak dependent data, although see the recent works of Chen and 

Fan (1999), Hjellvik and Tj0stheim (1995, 1998), Hjellvik et al (1999), Kreiss et al (1998), 

Berg and Li (1998) and a very important contrib,ution by Li (1999) where he develops the 

asymptotic theory results of Li-Wang-Zheng (LWZ) test under the goodness of fit measure 

(iii). The modest goal of this paper is to conduct an extensive monte carlo study to analyze 

the size and power properties of two kernel based tests for time series models. One of them 

is the bootstrap version of Ullah..type goodness of fit test (i) due to Cai, Fan, and Yao (2000, 

henceforth CFY), and another is the nonparametric conditional moment goodness of fit test 

.	(iii) of LWZ. We examine the bootstrap performances of these two goodness of fit tests be

cause of the asymptotic validity results of using bootstrap methods for these statistics due to 

CFY (2000) and Berg and Li (1998). Berg and Li (1998) also support the better performance 

of LWZ over the Hardle and Mammen (1993) type tests considered for time series data in 

Hjellvik and Tj0stheim (1995, 1998), Hjellvik et al (1999), and Kreiss et al (1998). For the 

purpose of our simulation study we consider the testing of linearity against a large class of 

nonlinear time series models which include threshold autoregressive, bilinear, exponential 

autoregressive models, smooth transition autoregressive models, GARCH models, and var~ 

ious nonlinear autoregressive and moving average models. Both naive bootstrap and wild 

bootstrap procedures are used for our analysis. We also compare the bootstrap results with 

the results using the asymptotic distribution for LWZ test. 

The plan of the paper is as follows. In Section 2, we present the nonparametric kernel 

regression estimators and the tests of CFY and LWZ based on them. Then in Section 3, we 
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the monte carlo results. Finally, Sect.ion 4 gives conclusions. 

Nonparametric regression and specification testing 

Nonparametric regression 

{UtI Xt}l t ;::;: 1, ... I n, be stochastic processes, where Yt is a scalar and Xt = (Xtll'" ,Xtk) 

a 1 x k vector which may contain the lagged valu~ of Yt. Consider the regression model 

(1) 


where m(xc) ;::;: E (YtIXt) is the true but unknown regression fllhction and Ut is the error term 

that E(Utlxt} = 0 and Var(Ut\Xt) == (72, 

If m(xc) == g(Xt, 6) is a correctly specified family of parametric regression functions then 

== g(Xt, 6) +Ut is a correct model and, in this case, one can construct a consistent least 

squares (LS) estimator of m(Xt} given by g(x" 6), where 6is the LS estimator of the parameter 

6. This 6is obtained by minimizing 

(2) 


with respect to 6. For example, if 9(Xt,O) = Xto is linear, we can obtain the LS estimator of 

. 0 as 

6= (X'X)-lX'y, (3) 

. and the predicted residuals il t = Yt - m(xt), where X is an n x (k + 1) matrix generated by 

X t = (1 Xt) and 

(4) 


In general l if the parametric regression g{Xt,o) is incorrect or the form of m(Xt) is unknovv"n 

.. then 9(Xt1 b) may not be a consistent estimator of m(Xt). 

For. this case, an alternative approach to estimate the unknown m(xc) is to use the 

consistent nonparametric kernel regression estimator which is essentially a local constant LS 

(LeLS) estimator. To obtain this estimator take Taylor series expansion of m(Xt} around I 

so that 

" 

Yt - m(Xt) +Ut (5) 

- m(x) +t't 
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(9) 

wht 

wit 

LC 

0(:1: 

derivative of m(x) at Xt x. ThcpLCLS estimator can then be derived by minimizing 

n n

2: vlKt:t = '2:(Yt - m(x»2Ktz 	 (6) 
t-I ",,,1 

with respect to constant m(x), where K tz = K(x';I1:) is a decreasing function of the distanC'eS 

of the regressor vector Xt from the point x = (Xb.'" X.,), and h -+ 0 as n -t oc is the 

window widt.h (smoothing parameter) which determines how rapidly the weights decrease as 

the clistance of Xt from x increases. The LCLS estimator so estimated is 

•( ) _ l:~""1 YtKtx _ (O'K( ).)-1°'K( ) 	 (7)m 	x - "" K - I X I I X Y
4,..,t=l t:r 

where K(x) is the n x n diagonal matrix with the diagonal elements (Kl:r," ., Knx) and i is 

an n x 1 cohunn vector of unit elements. The estimator m(x) is due to Nadaraya (1964) and 

Watson (1964) (NW) who derived this in an alternative way. Generally ih(x) is calculated 

at the data points Xt, in which case we can write the leave-one out estimator as 

_ () E~=1.t':Ft Yt' Kt't (8)m x = "n ,
4,..,t'=1,t':/:t Kt't 

where Kt't = Kec'~Xt). The assumption that h -t.O as n -+ 00 gives Xt - x = O(h) -t 0 

and hence EVt -t 0 as n -t 00. Thus the estimator m(x) will be consistent under certain 

. smoothing conditions on h, K, and m(x). In small samples however EVt f:. 0 so m(x) will be 

a biased estimator, see Pagan and Ullah (1999) for details on asymptotic and small sample 

properties. 

An estimator which has a better small sample bias and hence the mean square error 

(MSE) behavior is the local linear LS (LLLS) estimator due to Stone (1977) and Cleveland 

(1979), also see Fan and Gijbels (1996) and Ruppert and Wand (1994) for their properties. 

In the LLLS estimator we take first order Taylor-Series expansion of m(xt) around x so that 

Yt 	 - m(xt) +Ut = m(x) + (Xt - x)m(l)(x) +Vt 

- a(x) + Xt.B(x) + Vt 

- Xto(x) +Vt 
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[o:(x) t3(x)']' with Q(x) =:: m(x) .... x/3(x) and f3(x) =:: m(l)(x). The LLLS 

estimator of 6(x) is then o~ned by minimizing 

n n 

Lv~KtJ: =:: 2:(Yt:"" Xt6(X))2Kt:t 	 (10) 
t~l t~l 

and it is given by 

6(x) =:: (X'K(X)X)-l X'K(x)y. 	 (11) 

The LL~S estimator of a(x) and f3(x) can be calculated as &(x) = [1 0)6(x) and ~(x) == 

[0 1)6(x). This gives 

~(X) = [1 x]8(x) = &(x) + x[3(x). (12) 

Obviously when X = i, 8(x) reduces to the NW's LeL8 estimator m(x). 

An estimator of the LLL8 is the local polynomial L8 (LPL8) estimators, see Fan and 

Gijbels (1996). In fact one can obtain the local estimators of a general nonlinear model 

g(Xt,lj) by minimizing 
n 

L[Yt - g(Xtl o(x))fKt:1: (13) 
'=1 

with respect to o(x). For g(xt,o(x)) = Xto(x) we get the LLL8 in (11). Further when 

h = 00, Ktx = K(O) is a constant so that the minimization of K(O) ElYt - g(xt, o(x))]2 is 

the same as the minimization of ElYt - g(x" 0(x))]2, that is the LL8 becomes the global L8 

estimator given by (3). 

The LLL8 estimator in (11) can also be interpreted as the estimator of the functional 

coefficient (varying coefficient) linear regression model 

Yt 	 - m(xt) + 'Ut (14) 

- Xto(x) + 'Ut 

where o(Xt) is approximated locally by a conStant o(Xt) ~ o(x). The minimization of E u;Ktx 

with respect to 6(x) then gives the LLL8 estimator in (11), which can be interpreted as the 

LC varying coefficient estimator. An extension of this is to consider the linear approximation 

o(Xt) ~ o(x) + D(x)(xt - xY where D(x) = 8~~t) evaluated at Xt = x. In this case. 

Yt 	 - m(Xt) + 'Ut = Xto(Xt) + Ut (15) 

'" Xto(x) + XtD(x)(xt - x)' + Ut 
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(20) 

(21) 

N 

S' 

= X,8(x) +X, 0 (Xt - x)vecD(x) + Ut 

:= ~8"(x) +Ut 

wbere Xt := tXt Xt 0 (Xt - x)], c·(x) = [c'(x) (vecD(x))')', and 0 represents the Hadamard 

product. The LL varying coeffident or LPLS estimator of c"(x}.can then be obtained by 

minimizing 
n 

(16)L[Yt - X:c"(x)fK", 
e= 1 

with respect to c"(x) as 

r (x) = (X'" K(x)X")-l X'" K{x)y. (17) 

- ...... 
From this 8(x) = II 0]8 (x), and hence 

-. 
,1'" (x) = [1 x 0]8 (x) = Il xJ6(x). (18) 

The above idea can be extended to the situations where et = (Xt Zt) such that 

(19) 

where the coefficients are varying with respect to only a subset of et; Zt is 1 x l and et is 

1 X P: P = k + l. Examples of these include random coefficient model (Raj and UUah 198L 

Granger and Teriisvirta 1993), exponential autoregressive model (Haggan and Ozaki 1981), 

and threshold autoregressive model (Tong 1990), also see Section 3. To estimate C(Zt) we can 

again do a local constant approximation C(Zt) ~ c(z) and then minimize E[Yt - X;c(z)]2K tz 

with respect to c(z), where K tz = KCt;:%). This gives the LC varying coefficient estimator 

8(z) = (X'K(Z)X)-l X'K(z)y 

where K(z) is a diagonal matrix of Ktz , t = 1, ... ,n. 

CFY (2000) consider a local linear approximation b(zt) ~ 6(z) + D(z)(zt - z)'. The LL 

varying coefficient estimator of CFY is then obtained by minimizing 

n n 

L[Yt - X tC(Zt)]2 K tz - LIYt - Xtc(z) - (Xt 0 (Zt - z))vecD(z)]2Ktz 
t=1 t=1 

n 

- 2)Yt - X;*6*(z)j2Ktz 
t==l 

6 

witl 

Me 

WI 

ing 

2. 

Cc 
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In 
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i) 

') 
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1 

with respect to 6*(z) [6(z}' (1JecD(z))'j' where Xi"' ~ [X, Xt :!) (Zt - z)]. Thls gives 

-/I
6 (z) = (X"'K(Z)x u }-lXu' K(z)y, (22), 

- ....... 
and 6(z) := [10]6 (z). Hence 

(23) 

When z = x, (20) and (22) reduce to the LLLS est.imator bex) in (11) and the LL vary~ 
....... 

ing coefficient estimator 6 (x) in (17), respectively. For the asymptotic properties of these 

varying coefficient estimators, see CFY (2000). 

2.2 ,Nonparametric tests for functional forms 

Consider the problem of testing a specified parametric model against a nonparametric (NP) 

alternative 

Ho E(ytl€t} = g(ee, 6) 


HI E(ytl€,) = m(€t). 


In particular, if we are to test for neg;lected nonlinearity in the regression models, set 9 (et 16) = 
€t8. Then under HOI the process {yd is linear in mean conditional on €t 

(24) 

The alternative of interest is the negation of the null, that is, 

(25) 


When the alternative is true, a linear m09-e1 is said to suffer from 'neglected nonlinearity'. 

Note that €t = (Xt Zt) = Xt when zt = Xt .. 

Using the nonparametric estimation technique to construct consistent model specification 

tests was first suggested by UUah (1985). The idea is to compare the parametric residual 

sum of squares (RSSP ), E ur, ilt = Yt - g(€" 6) with the nonparametric RSS (RSS~P), L u;,-. . 

where Ut = Yt ~ m (€t). The test statistic is 

(26) 
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or simply TI (RSSP -- RSSNP). We reject the null hypot.hesis when T is large. ViiT has a. 

degenerate distribuUon under ltlo- Yatchew (1992) avoids t,his degeneracy by splitting sample 

of n into 71,1 and n2 and calculating L: u; based on nl observations and r: u; based OJ) n2 

observations. Lee (1992) \l.')es density weighted residuals and compares EWtu; with LU;, 
Fan and Li (1995) uses different normalizing factor and show the asymptotic normality of 

nhP/ 2T. 

Another way is to use the bootstrap method as suggested by CFY (2000). The bootstrap 

allows the implementation of (26) and it involves the following steps to evaluate p-values of 

the test: 

1. 	Generate the bootstrap residuals {u;} from the centered NP residuals (iit -11) where 

11= n-1 Lilt and define V; == et 6+u;. 

2. 	 Construct the bootstrap sample {v; et} f=l and calculate the bootstrap fest statistic 

T* using, for the sake of simplicity, the same h used in estimation with the original 

sample. 

3. 	Repeat the above two steps B times and use the empirical distribution of T* as the 

null distribution of T. Reject the null hypothesis Ho when T is greater than the upper 

a point of the conditional distribution of T* given {Vt et}t:l' The p-value of the test 

is simply the relative frequency of the event {T· 2: T} in the bootstrap resamples. 

Kreiss et al (1998) provide more detailed r~asons why the bootstrap works in general 

non parametric regression setting. They proved that asymptotically the conditional distri

bution of the bootstrap test statistic is indeed the distribution of the test statistic under 

the null hypothesis. As mentioned by CFY (2000) it may be proved that the similar result 

holds for T as long as 6converges to f; at the rate n-1!2. We use both naive bootstrap (Efron 

1979) and wild bootstrap (Wu 1986, Liu 1988). The wild bootstrap method preserves the 

conditional heteroskedasticity in the original residuals. For wild bootstrap, see also Shao 

and Th (1995, p. 292), Hardle (1990, p. 247), or Li and Wang (1998, p. 150). 

An intuitive and simple test of the parametric specification follows from the combined 

regression 
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las a 

nple paramotric specification is tm.en the condit.ional moment t.est for mu(et) := E(u.tlet) 0, 

n n2 which is identical to testing 

E[u,E(ucled!(et)} =: 0, 	 (28) 

y of 
where f(et) is the density of e. A sample estimator of the left hand side of (28) is 

Lrap (29) 

s of 

lere 	 where E(Utlet) = Etl# ut'Ked EtirH Kt' t from (8) and j(et) = (nhPt 1 2;t1f.t Kt't is the 

kernel density estimator; Kt't = K(("'h(I). The asymptotic test statistic is then given by 

2 L'stic 	 L ::::: nhP/ r.: '" N(O: 1) (30) 
vw

.nal 
where w ::::: 2(n(n - 1)hP)-1 Et Etlt-t ft~U;IKf,t is a consistent estimator of the asymptotic 

variance of nhP/ 2 L', see Zheng (1996), Fan and Li (1996), Li and Wang (1998), Fan and 
the Ullah (1999), and Rahman and Ullah (1999)! for details. Also, see Pagan and. Ullah (1999, 

per eh. 3) and Ullah (1999) for the relationship of this test statistic with other nonparametric 
est 	 specification tests. Based on the asymptotic results of Fan and Li (1996, 1997, 1999) and Li 

(1999) for dependent data, Berg and Li (1998) establish the asymptotic validity of using the 

wild bootstrap method for L for time-series. 
ral 

;ri
3 Monte carlo 

ler 

llt In this section we examine the finite sample properties of T and L especially with the 
on empirical null distributions being generated by the bootstrap method. Asymptotic critical 
he values are also used for L. To generate data we use the following models, all of which 
ao have been used in the related literature. Most of them are univariate while there are some 

multivariate situations. There are six blocks. The error term Ct below is i.i.d. N (0, 1) unless 

otherwise is indicated. The models will be referred by the name shown in parentheses in 

bold. 
7) 
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BLOCK 1 (I~>e, White, and Granger, 1993) 

Linear (AR) :#' 

Linear AR with GARCH (AR') 

Vt - O.6Yt_l + £, 


ht - E(c:;IYt-l) = (1 - a - (3) +Qe;-l + (3ht- 1 


Bilinear (BL) 

Threshold Autoregressive (TAR) 

Yt - 0.9Yt-l + et IYt-11 ~ 1 

- -O.3Yt-l + et IYt-II> 1 

Sign Nonlinear Autoregressive (SGN) 

Yt = sign(Yt-l) +et 

where sign(x) = 1 if x> 0,0 if x = 0, and -1 if x < O. 

Rational Nonlinear Autoregressive (NAR) 

0.71Vt-l! 

Yt = I ! 2 +Ct
Yt-l + 

BLOCK 2 (Lee, White, and Granger, 1993) 

MA(!!) (Ml) 

Heteroskedastic MA(2) (M2) 

Note that 1\12 is linear in conditional mean as the forecastable part of M2 is linear, and the 

final term int.roduces heteroskedasticity. 

No 

Ali 


Bil: 


BL 

Squ 


E:q, 


ThE 


BLi 


fron 

Lin~ 

Que 
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Nonlinear MA (M3) 
;til 

y, ::= I!t - O.3et_l + O.2Ct-2 + OAet.-lct-2 - O,25e~_2 

AR(2) (M4) 

Bilinear AR (M5) 

, Bilinear ARMA (M6) 

Vt = OAY:-l - O.3Vt-2 + O.5Vt-·let-l + O.8et-l + Et 

BLOCK 3 (Lee, White, and Granger, 1993) 


Square (SQ) 


Exponential (EXP) 

These are bivariate models where Xt = O.6Xt-l +et, Ctt rv N(O, 52),and Ctt, Et are independent. 

BLOCK 4 (Zheng, 1996) 

Five models with Xt = (X71 Xt2) are considered in this block. Let Un and Ut2 be drawn 

from IN(O, 1). Two regressors Xtl and Xt2 are defined as Xu = Utl and Xt2 = (Uti +ud/J2· 

Linear (ZI) 

Yt = 1 + Xtl + Xt2 + et 

Linear with conditionally heuroskedastic error (ZI') 

11: - 1 + Xu + Xt2 + et 

h-: _ E(e;lx~) = (1 + X~l + X;2)/3 

the Quadratic (Z2) 


Yt = 1 + Xu + Xt2 + Xu X t2 + Et 
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Concave (Z3) 

:II 'l/t = (1 + Xu + Xt2)1/3 + Et 

Convex (Z4) 

BLOCK 5 (Cai, Fan, and Yao, 1999) 

Exponential AR (EXPAR) 

Yt - al(Yt-dYt-l + a2(Yt-dYt-2 +et 

al (Yt-l) - 0.138 + (0.316 + 0.982Y'_I) exp( -3.89Y;~I) 

a2(Yt-l) - -0.437 - (0.659 + 1.260Yt_1) exp(-3.89Y;_I) 

e, I'V 1N(O, 0.22 
) 

Threshold AR (TAR) 

Yt - al (Yt-2)Yt-1 + a2(Yt-2)Yt-2 + et 

a1 (Yt-2) - 0.4/(Yt-2 ~ 1) - 0.8/(Yt-2 > 6) 

a2(Yt-2) - -0.6/(Yt-2 ~ 1) + 0.2/(Yt-2 > 1) 

et 1N(O, 1)I'V 

BLOCK 6 (Terasvirta, Lin, and Granger, 1993) 

Logistic smooth transition AR (LSTAR) . 

Yt - 1.8Yt-l - 1.06Yt-2 + (0.02 - 0.9Yt-l +O.795Yt-2)F(Yt-1) + et 

F(Yt-l) - [1 + exp{ -100(Yt-l - O.02)}t1 

et rv IN(O,O.022 
) 

Exponential smooth transition AR (ESTAR) 

Yt - 1.8Yt-1 - 1.06Yt-2 + (-0.9Yt-1 +0.795Yt-2)F(Yt-l) + et 

F(Yt-1) - [1 - exp{-4000Y;_1}t1 

I3:t rv 1N(O, 0.012 
) 

12 

T. 

inion 

for B: 

F( 
Let T1 

sutrS( 

then 1 

mb~ 

squar! 

where 

and 6t; 
Epane 

(with I 

for BIc 

FOI 

an 1 x 

param4 

for BIo 

values 

will be 

Tes< 

methoc 

bootstr 

with 30 

Tao 

are line; 



To estimate (3) and Ut 

nt.DlrIIUi.II111IU set used are et ::::: Yt-l for Block 11 et 
Block 3, and et ::::: (xu X(2) for Block 4. 

For T, as suggested by CFY (2000), 

es of lengths n 

m bnsed on the estimated models. That is to choose h minimizing the average of the mean 

rtf the linear model, Iltld (23) and Ut for the NP model, the 

(Y'''l Yt-2)' for Blocks 2, 5, and 6, et =:: Xt 

we select h using out-of-sample cross~vaUdatlon. 

m and'Q be two positive integers such that n > mQ.The basic idea is first to use Q 

- qm (q = 1, ... ,Q) to estimate the coefficient functions Oq(Zt} and 

to compute the one-step forecast errors of the next segment of the time series of length 

Q 

AMS(h)::::: 2:AMSq(h) (31) , 
q=l 

1 n-~+m -

AMSq(h) = m L [Yt - X t 5q(Zt)]2 (32) 
t=n-qm+l 

-
and 5q(.) are computed from the sample {Yt et}~::tn. We use m = [O.ln), Q = 4, and the 

Epanechiniko\' kernel K(;) = ~(l - z2)1(lzl < 1). We use a scalar 'threshold variable' Zt 

(with l = 1) for all models: Zt = Yt-l for Blocks 1,2, and 6, Zt = Xt for Block 3, and z, = Xlt 

for Block 4. For Block 5, Zt = Yt--l for EXPAR and Zt = Yt-2 for TAR. 

For L, as in Li and Wang (1998, p. 154), we use a standard normal kernel. Note that et is 
an 1 x p vector, and p = 1 for Blocks 1,3 and p = 2 for Blocks 2, 4, 5, 6. Thus the smoothing 

parameter h is chosen as hi - cain-l/5 (i = 1) for Blocks 1 and 3, and hi = win-1/6 (i = 1,2) 

for Blocks 2, ·t 5,6, where ai is the sample standard deviation of i-th element of e. The three 

values of c = 0.5, 1, and 2 are used, and the corresponding estimated rejection probability 

will be denot€d as Le. In computing L, hP shown in (29) and (30) is replaced with Df=l hi, 

Test statistics are denoted as Ti and L~, with the superscripts i = A, B, W referring to the 

methods of obtaining the null distributions of the test statistics; asymptotics (i = A), naive 

. bootstrap (i = B), and wild bootstrap (i = W). Monte carlo experiments .are conducted 

with 300 bootstrap resamples and 300 monte carlo replications. 

TaBle 1 gives the estimated size of the tests for the data generating processes (DGP) which 

are linear in conditional mean. Table 1 reports the cases with the conditional homoskedastic 
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(~rrors, The 95% confidence interval of the estimat,ed size is (0.025, 0,075) at 5% nOmlnal 

level of significance, and (0.066~.134) at 10% nominal level of significance, since if the true 

size is 8 (e.g., s ::1'$ 0.05,0.10) the estimated size follows the asymptotic normal distribution 

with mean s and variance 8(1 - s) /300 with 300 monte carlo replications. Due to the long 

(~mputing t.ime for each Simulation, only 300 replications are conducted and thus it must be 

noted that the confidence intervals are rather wide. The naive bootstrap CFY test TB tends 

to under-reject the null, while rW with wild bootst.rap method tends to overMreject the nulL 

The size is often worse with n ::;: 50, which may be due to an estimation of the bootstrap 

DGP (23) to generate the bootstrap residuals {tL;} in the very small samples. While the two 

bootstrap procedures work differently for the CFY test (TB and T W 
), they are very similar 

for the LWZ test (L: and L~). Both bootstrap tests L: and L~ are generally better than 

the asymptotic test £~. Both bootstrap procedures work very well especially with c = 0.5. 

£0.5 is better than £1.0 which is better than £2.0. The size of L is quite sensitive to the choice 

of c and the bandwidth h. 

Davidson and MacKinnon (1999) show that the size distortion of a bootstrap test is at 

least of the order n-1/ 2 smaller than that of the corresponding asymptotic test. A further 

refinement, beyond n-1/2 , of the order n-1/ 2 can be obtained when an asymptotically pivotal 

statistic (whose limiting distribution is independent of unknown nuisance parameters) is used 

for testing. Since L is asymptotically normal under the null, the bootstrap tests LB and LW 

are more accurate than the asymptotic test LA by a full order of n-1
• See Hall (1992) for 

further discussion based on Edgeworth expansions on the extent of the refinements in other 

contexts. 

Table 2 gives the estimated size of the tests for the data generating processes (DGP) 

which are linear in conditional mean with conditional heteroskedastic errors. For AR', we 

consider GARCH errors with five different parameter values: (0:, {3) = (0.5,0.0), (0.7,0.0), 

(0.1.,0.89), (0.3,0.69), and (0.5,0.49). The condition for the existence of the unconditional 

fourth moment is 30:2 + 20:f3 + 132 < 1 (Bollerslev, 1986). Accordingly, the condition is 

a: < 0.577 if 13 = 0; (3 < 0.890 if a ::;: 0.1; 13 < 0.606 if 0: = 0.3; and f3 < 0.207 if a = 0.5. 

Thus, for a given values of f3 or a + 13, the series becomes more leptokurtic as 0: increases. 

Table 2 shows that with {3 = 0 fixed, the size distortion is larger with the larger (};. With 

a: + f3 = 0.99 fixed, the size distortion is larger also as 0: increases. The size distortion 
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gets worse as n increases. nlls is most apparent with LB as the naive bootstrap 

not preserve the condit.ionl11 hett>roskedast.icity in resampling. 

. Generally, as discussed in Lee et al (1993, p. 288), the conditional heteroskedastidty 

have one of two effects: either it will cause the size of a test to be incorrect while still 

ting in a test statistic bmmded in proba.bility under the null, or it will directly lead 

) to rejection despite linearity in mean. The test statist.ic L is a conditional 

liiIl,omem; test based on the fact that E(utled = 0 under the null hypothesis (24) which 

then imply equation (28) for L. As this moment condition will hold even under the 

I~nresence of the conditional heteroskedasticity (which can be shown by the law of iterated 

1I1e:x:oeCtatlollS), L should not have power to reject the null for the DGPs AR' and ZI' which are 

iII'~.l'''''V<_ in conditional mean with conditionally heteroskedastic errors. However, the results in 

2 show that the size of L~ is adversely affected by the conditional heteroskedasticity, 

is more serious with a larger sample size. 

Two remedies may be considered: olle may either (1) remove the effect of the conditional 

or (2) remove the conditional heteroskedasticity itself The first is relevant 

to L whose size is adversely affected. The effect of the conditional heteroskedasticity can be 

removed using a heteroskedasticity-consistent covariance matrix estimator or using the \\ild 

bootstrap that preserves the heteroskedasticity in resampling. We use the wild bootstrap 

here. The results in Table 2 show that the L\VZ test with the wild bootstrap L";' generally 

has the adequate size for the both nGPs AR' and ZI', 

On the other hand, T is not a conditional moment test as it is not based on any moment 

condition. T is constructed to compare the two residual sums of squares RSSP and RSSxP. 

Ai:, the alternative model to compute RSSNP is estimated by the functional coefficient (Fe) 

model (23), if the FC model absorbs some of the conditional heteroskedasticity the size of 

the CFY test T will be incorrect, which we may observe in Table 2. Note that the size 

distortion generally tends to get more severe as n increasf'..5 especially for AR/. The use of 

the wild bootstrap reduces the size distortion but only by small margin. In this case one may 

attempt the second remedy by remO\ing the conditional heteroskedasticity itself whenever 

one is confidently able to specify the form of the conditional heteroskedasticity. However, use 

of misspecified conditional variance model in the procedure will again adversely affect the size 

of the test. Furthermore, if the alternative is true, the fitted conditional heteroskedasticity 
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model can a.bsorb some or even much of the neglected nonlinearity in conditional mean 

model. Conceivably, this could java adverse impact on the power of T. Consideration of the 

second remedy together with the wild bootst.rap could raise issu~ that take us well bey()nd 

the scope of the pret:mnt study and their investigation is left for other work. Be 
Table 3 presents the power of the tests T and L at 5% leveL The results at 1% .and 

10% levels are available but not presented t.o save space. As the r~ults obtained can be Bie 
considerably influenced by the choice of nonlinear models, we try to include as many different 

types of nonlinear models as possible. Neither T nor L is urufonnly superior to the other. Bie 

T has good p~wer for BL and ESTAR and has power comparable to L in other cases. 

Bol 

4 Conclusions 
Cai 

We have presented a unified framework for various non parametric kernel regression estima

tors, based on which we have considered two non parametric tests for neglected nonlinearity 

in regression models. Both naive bootstrap and wild bootstrap are used to generate the erit. Che 

ical values together with the asymptotic distributions. TB with the naive bootstrap tends 

to under-reject the null, while rW with wild bootstrap method tends to over-reject the null. 

The bootstrap LWZ tests LB anq. LW are better than the asymptotic test LA. When the 

errors are conditionally heteroskedastic the wild bootstrap for the LWZ test corrects the size 
Davi 

distortion; However, the use of the wild bootstrap for TW does not correct the size problem. 

This difference of the two statistics is due to the different construction of the test statistics: Delg 
L is constructed based on a moment condition implying linearity in conditional mean, while 

T is constructed. to detect any possible forecast improvement via a nonparametric model over Eubc 
a linear model. Hence, L can be robustified to the presence of conditional heteroskedasticy 

in testing for the linearity in conditional mean, while T will have power to detect neglected 
Fan,nonline-Mity in conditional mean as well as the conditional heteroskedasticity. 

Fan, 
(... 

Fan, . 

'

Fan, . 
S 
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TABLE 1. Silts 

, n LL, 
50 .037 .121 • 23 .033 ,043 . 7 .030 .000 .007 

100 
1, 

.023 .087 .010 .017 .017 .003 .020 .000 .003 
200 .040 .097 .017 .033 .040 .007 .020 .000 .000 

d 300 .037 .073 .023 .033 .027 .0lD .027 .000 .010-i .027 .170 .030 .033 .037 .013 .020 .027 .000 .000 
100 

2 Ml 50 
.007 .113 .030 .033 .040 .010 .023 .020 .000 .003 

200 .023 .100 .053 .053 .053 .013 .033 .030 .000 .000 
300 .027 .093 .033 .037 .037 .020 .020 .023 .000 .007 .0lD 

2 M4 50 .003 .113 .023 .027 .023 .0lD .013 .017 .000 .000 .003d 
100 .0lD .100 .020 .023 .023 .010 .017 .013 .000 .007 .007 
200 .020 .097 .023 .030 .027 .017 .027 .017 .000 .017 .017 
300 .017 .110 .033 .040 .03a .007 .013 .013 .000 .003 .003 

4 Zl 50 
L

.023 .117 .033 .073 .073 .003 .040 .047 .000 .030 .033 
100 .007 .077 .020 .050 .050 .017 .057 .070 .000 .063 .060 

n 200 .023 .097 .027 .040 .050 .0lD .047 .037 .003· .063 .050 
300 .017 .080 .017 .037 .030 .003 .037 .030 .000 .040 .047 

1

Panel B 10% nominal level of significance 
TB TWBlock DGP n LC.s Ll!.s Ltr,., Lt.o Lfo Lr.'o L~o L¥.o Lro 

i .080 .193 .040 .083 .073 .020 .057 .053 .000 .027 .023 
100 

1 AR 50 
.053 .147 .023 .063 .060 .020 .057 .047 .000 .027 .027 

200 .060 .143 .053 .090 .083 .017 .060 .050 .000 .020 .023 
300 .067 .143 .033 ..070 .077 .013 .047 .050 .000 .040 .040 

2 Ml 50 .050 .220 .067 .087 .093 .020 .043 .043 .000 .013 .007 
100 .037 .177 .053 .073 .073 .023 .057 .060 .000 .017 .020 
200 .037 .153 .077 .090 .090 .033 .063 .053 .000 .003 .017 
300 .047 .157 .050 .080 .073 .027 .057 .050 .000 .023 .023 

2 M4 50 .013 .163 .040 .060 .053 .013 .043 .040 .000 .010 .0lD 
100 .037 .150 .030 .043 .057 .013 .033 .037 .003 .013 .010 
200 .047 .157 .033 .057 .050 .023 .040 .043 .020 .020 .020 
300 .033 .187 .057 .073 .067 .013 .043 .033 .000 .013 .020 

4 Zl 50 .053 .190 .080 .137 .130 .010 .130 .123 .000 .077 .107 
100 .030 .160 .047 .130 .130 .027 .110 .103 .000 .113 .110 
200 .043 .170 .050 .100 .103 .017 .080 .087 .003 .120 .107 
300 ..040 .147 .037 .083 .073 .0lD .090 .090 .000 .093 .110 

Notes: Test statistics are denoted as T and L~, with the superscripts i = A, B, W refer to the 
methods of obtaining the null distributions of the test statistics; using the asymptotics (A). naive 
bootstrap (B), and wild bootstrap (W). The number of bootstrap resarnples = 300 and number of 
monte carlo replications = 300. 



TABLE 2. Size under conditional heteroskedastidty 

L L L L L 
1 ARt .183 .230 .043 ,013 .063 .043 .017 

a ==.5 .260 .290 .040 .013 .067 .067 .027 

t3 .0 .417 .373 .043 .020 .070 .057 .020 

1 ARt 51 .240 .337 .023 .020 .053 .023 .040 .013 
a= .7 to1 .403 .430 .047 .040 .087 .047 .090 .037 
/3 ==.0 2m .610 .520 .127 .060 .060 .163 .053 .177 .043 

1 ARt 5) .043 .150 .023 .037 .030 .010 .033 .027 .003 .010 
a ==.1 1m .063 .123 .010 .027 .020 .003 .020 .017 .013 .013 
/3:= .89 20) .073 .110 .020 .030 .027 .007 .020 .017 .000 .023 .010 

1 AR' 5j .137 .217 .007 .027 .023 .003 .027 .013 .000 .007 .003 
a ==.3 10) .233 .273 .043 .073 .043 .037 .083 .043 .003 .083 .030 
t3::::: .69 20) .427 .303 .080 .123 .077 .063 .127 .060 .023 .140 .053 

1 ARt 5) .167 .273 .043 .060 .040 .023 .060 .030 .000 .040 .017 
a::::: .5 to) .380 .323 .053 .103 .043 .030 .090 .033 .007 .087 .017 
/3:::: .49 20) .683 .527 .103 .170 .073 .093 .223 .083 .040 .253 .063 

4 ZIt 5) .267 .387 .030 .063 .043 .020 .103 .043 .010 .117 .050 
100 .410 .360 .047 .080 .060 .027 .137 .060 .013 .170 .070 
200 .507 .350 .047 .083 .047 .020 .090 .040 .013 .163 .050 

P I B 10<1< . '1 If' 'fiane o nOffilna.: eve 0 slgm cance ~ 

'~"r~L~;"c 

1 

I • 	 Notes: AR }s AR WlU GARCH(l,l) h t = (l-a-{3)+at:F-l +t3h;_l' Z1 IS Zl WIth ht = E(etl~t) - · 
(1 + X;l + x;2)/3. 

Block 	 DGP n 

1 	 ARt 5J 
a= .5 1(1) 

/3 =.0 200 
1 	 ARt 5J 

a= .7 100 
/3 ==.0 2(1) 
ARt1 5J 
a= .1 100 
/3 = .89 2(0 

1 	 ARt W 
a= .3 1(0 

/3 = .69 2(0 
ARt1. 	 W 
a= .5 1(0 

/3 = .49 2(0 

4 Zl' ro 
1(0 
2[.Q 
. . 

Tl:J TW L~5 Lff.s Lb:s L~o Lro Li~o LfJ.o L¥.o L~o 
.233 .310 .063 .127 .087 .037 .093 .073 .003 .070 .037 
.377 .370 .050 .097 .070 .037 .117 .067 .0lD .1l0 .050 
.473 .453 .067 .123 .110 .037 .127 .097 .020 .110 .060 
.330 .407 .043 .127 .087 .027 .090 .053 .003 .073 .033 
.547 .493 .063 .120 .093 .060 .153 .083 .030 .153 .063 
.713 .590 .120 .190 .120 .097 .203 .113 .053 .237 .097 
.073 .220 .037 .070 .060 .017 .050 .043 .000 .027 .020 
.100 .180 .023 .047 .053 .007 .053 .053 .003 .040 .033 
.120 .160 .030 .073 .063 .0lD .053 .050 .000 .030 .020 
.213 .273 .030 .097 .063 .003 .083 .043 .000 .037 .007 
.340 .340 .077 .147 .083 .050 .157 .087 .013 .133 .067 
.513 .397 .110 .200 .140 .087 .210 .113 .047 .200 .087 
.273 .317 .057 .lD7 .070 .023 .103 .057 .003 .057 .027 
.447 .403 .083 .163 .100 .050 .170 .067 .010 .150 .053 
.757 .617 .150 .280 .140 .147 .303 .153 .070 .337 .130 

.373 .450 .053 .170 .097 .030 .220 .083 .010 .243 .097 

.513 .480 .087 .153 .103 .063 .237 .120 .013 .263 .133 

.593 ,460 .087 .150 .117 .047 .177 .090 .027 .247 .103 
t . 	 .2, 
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TABLE 3 Power (5% l{;!v(:~l) 

..520 .073 .127 .037 .077 .170 .050 .047 .187 .040 
.773 .613 .130 .187 .107 .133 .230 .123 .110 .243 .080 . -
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